- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在为我的 CNN 模型使用 Keras。在该模型中,我正在使用图像对其进行训练。我的图像是 256*256 的形状。但是我把它训练成 64*64。当我将图像调整为 64*64 并再次训练时,我的准确率急剧下降。我错过了什么?
当我将 Convolution2D 输入形状排列为
classifier.add(Convolution2D(32,3,3,input_shape = (256,256), activation ='relu'))
这需要很多时间。因此,我将 Convolution2D 安排为 classifier.add(Convolution2D(32,3,3,input_shape = (64,64), activation ='relu'))
并训练了我的第一个模型。它预测得很好。
当我将输入图像的形状调整为 64*64 并使用 Convolution2D 进行训练时
classifier.add(Convolution2D(32,3,3,input_shape = (64,64)
我的准确率下降了。有什么问题?
这是代码
classifier = Sequential()
classifier.add(Convolution2D(32,3,3,input_shape = (64,64,3), activation ='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Flatten())
classifier.fit_generator(
training_set,
steps_per_epoch=8000,
epochs=10,
validation_data=test_set,
validation_steps=800)
这是我的 reshape 代码
from PIL import Image
import os
path = 'TestForTrain2'
for file in os.listdir('TestForTrain2'):
img = Image.open(os.path.join('TestForTrain2', file))
width, height = img.size
stringName = str(file)
print(width," === ",height)
print(stringName)
f, e = os.path.splitext(path + file)
imResize = img.resize((64, 64), Image.ANTIALIAS)
imResize.save( stringName + '.jpg', 'JPEG', quality=90)
最佳答案
何时预处理:这可能是预处理的图像。我们只在需要时预处理数据,因为当我们预处理数据时,我们会丢失一些信息。如果我们在某些情况下不预处理我们的数据,那么算法可能需要时间来处理大值(不是预处理数据)。
但我们不会预处理所有数据。您首先了解数据的性质,然后对其进行预处理。
您的解决方案:现在您正在通过调整图像大小来预处理数据。通过将您的图像从 ((256,256)) 转换为 ((64,64)) 现在当您有大尺寸图像时,它们在您的图像中有更多的像素值,每个像素都会为我们提供一些信息。现在,当您调整图像大小时,您的像素就会减少,因此您的模型可用于分类的信息也会减少。但是当您不调整数据大小时,您的机器需要时间来处理您的图像。现在通过实验找到一些中间方法,你选择的尺寸将为你的模型提供足够的信息,机器将做更少的工作来处理它。试试(180*180)(164 *164) 一直往下走,直到你根据数据达到你要求的精度。
关于python - Keras Conv2D 输入形状,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55819254/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!