- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
即使应用了答案和评论中的建议,维度不匹配问题似乎仍然存在。这也是要复制的确切代码和数据文件:https://drive.google.com/drive/folders/1q67s0VhB-O7J8OtIhU2jmj7Kc4LxL3sf?usp=sharing
这怎么能纠正!?最新代码、模型摘要、使用的函数和我得到的错误如下
type_ae=='dcor'
#Wrappers for keras
def custom_loss1(y_true,y_pred):
dcor = -1*distance_correlation(y_true,encoded_layer)
return dcor
def custom_loss2(y_true,y_pred):
recon_loss = losses.categorical_crossentropy(y_true, y_pred)
return recon_loss
input_layer = Input(shape=(64,64,1))
encoded_layer = Conv2D(filters = 128, kernel_size = (5,5),padding = 'same',activation ='relu',
input_shape = (64,64,1))(input_layer)
encoded_layer = MaxPool2D(pool_size=(2,2))(encoded_layer)
encoded_layer = Dropout(0.25)(encoded_layer)
encoded_layer = (Conv2D(filters = 64, kernel_size = (3,3),padding = 'same',activation ='relu'))(encoded_layer)
encoded_layer = (MaxPool2D(pool_size=(2,2)))(encoded_layer)
encoded_layer = (Dropout(0.25))(encoded_layer)
encoded_layer = (Conv2D(filters = 64, kernel_size = (3,3),padding = 'same',activation ='relu'))(encoded_layer)
encoded_layer = (MaxPool2D(pool_size=(2,2)))(encoded_layer)
encoded_layer = (Dropout(0.25))(encoded_layer)
encoded_layer = Conv2D(filters = 1, kernel_size = (3,3),padding = 'same',activation ='relu',
input_shape = (64,64,1),strides=1)(encoded_layer)
encoded_layer = ZeroPadding2D(padding=(28, 28), data_format=None)(encoded_layer)
decoded_imag = Conv2D(8, (2, 2), activation='relu', padding='same')(encoded_layer)
decoded_imag = UpSampling2D((2, 2))(decoded_imag)
decoded_imag = Conv2D(8, (3, 3), activation='relu', padding='same')(decoded_imag)
decoded_imag = UpSampling2D((2, 2))(decoded_imag)
decoded_imag = Conv2D(16, (3, 3), activation='relu', padding='same')(decoded_imag)
decoded_imag = UpSampling2D((2, 2))(decoded_imag)
decoded_imag = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decoded_imag)
flat_layer = Flatten()(decoded_imag)
dense_layer = Dense(256,activation = "relu")(flat_layer)
dense_layer = Dense(64,activation = "relu")(dense_layer)
dense_layer = Dense(32,activation = "relu")(dense_layer)
output_layer = Dense(9, activation = "softmax")(dense_layer)
autoencoder = Model(input_layer, [encoded_layer,output_layer])
autoencoder.summary()
autoencoder.compile(optimizer='adadelta', loss=[custom_loss1,custom_loss2])
autoencoder.fit(x_train,[x_train, y_train],batch_size=32,epochs=3,shuffle=True,
validation_data=(x_val, [x_val,y_val]))
数据的维度:
x_train.shape: (4000, 64, 64, 1)
x_val.shape: (1000, 64, 64, 1)
y_train.shape: (4000, 9)
y_val.shape: (1000, 9)
损失看起来像:
def custom_loss1(y_true,y_pred):
dcor = -1*distance_correlation(y_true,encoded_layer)
return dcor
def custom_loss2(y_true,y_pred):
recon_loss = losses.categorical_crossentropy(y_true, y_pred)
return recon_loss
相关函数基于张量如下:
def distance_correlation(y_true,y_pred):
pred_r = tf.reduce_sum(y_pred*y_pred,1)
pred_r = tf.reshape(pred_r,[-1,1])
pred_d = pred_r - 2*tf.matmul(y_pred,tf.transpose(y_pred))+tf.transpose(pred_r)
true_r = tf.reduce_sum(y_true*y_true,1)
true_r = tf.reshape(true_r,[-1,1])
true_d = true_r - 2*tf.matmul(y_true,tf.transpose(y_true))+tf.transpose(true_r)
concord = 1-tf.matmul(y_true,tf.transpose(y_true))
#print(pred_d)
#print(tf.reshape(tf.reduce_mean(pred_d,1),[-1,1]))
#print(tf.reshape(tf.reduce_mean(pred_d,0),[1,-1]))
#print(tf.reduce_mean(pred_d))
tf.check_numerics(pred_d,'pred_d has NaN')
tf.check_numerics(true_d,'true_d has NaN')
A = pred_d - tf.reshape(tf.reduce_mean(pred_d,1),[-1,1]) - tf.reshape(tf.reduce_mean(pred_d,0),[1,-1]) + tf.reduce_mean(pred_d)
B = true_d - tf.reshape(tf.reduce_mean(true_d,1),[-1,1]) - tf.reshape(tf.reduce_mean(true_d,0),[1,-1]) + tf.reduce_mean(true_d)
#dcor = -tf.reduce_sum(concord*pred_d)/tf.reduce_sum((1-concord)*pred_d)
dcor = -tf.log(tf.reduce_mean(A*B))+tf.log(tf.sqrt(tf.reduce_mean(A*A)*tf.reduce_mean(B*B)))#-tf.reduce_sum(concord*pred_d)/tf.reduce_sum((1-concord)*pred_d)
#print(dcor.shape)
#tf.Print(dcor,[dcor])
#dcor = tf.tile([dcor],batch_size)
return (dcor)
模型总结如下:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_5 (InputLayer) (None, 64, 64, 1) 0
_________________________________________________________________
conv2d_30 (Conv2D) (None, 64, 64, 128) 3328
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 32, 32, 128) 0
_________________________________________________________________
dropout_13 (Dropout) (None, 32, 32, 128) 0
_________________________________________________________________
conv2d_31 (Conv2D) (None, 32, 32, 64) 73792
_________________________________________________________________
max_pooling2d_14 (MaxPooling (None, 16, 16, 64) 0
_________________________________________________________________
dropout_14 (Dropout) (None, 16, 16, 64) 0
_________________________________________________________________
conv2d_32 (Conv2D) (None, 16, 16, 64) 36928
_________________________________________________________________
max_pooling2d_15 (MaxPooling (None, 8, 8, 64) 0
_________________________________________________________________
dropout_15 (Dropout) (None, 8, 8, 64) 0
_________________________________________________________________
conv2d_33 (Conv2D) (None, 8, 8, 1) 577
_________________________________________________________________
zero_padding2d_5 (ZeroPaddin (None, 64, 64, 1) 0
_________________________________________________________________
conv2d_34 (Conv2D) (None, 64, 64, 8) 40
_________________________________________________________________
up_sampling2d_10 (UpSampling (None, 128, 128, 8) 0
_________________________________________________________________
conv2d_35 (Conv2D) (None, 128, 128, 8) 584
_________________________________________________________________
up_sampling2d_11 (UpSampling (None, 256, 256, 8) 0
_________________________________________________________________
conv2d_36 (Conv2D) (None, 256, 256, 16) 1168
_________________________________________________________________
up_sampling2d_12 (UpSampling (None, 512, 512, 16) 0
_________________________________________________________________
conv2d_37 (Conv2D) (None, 512, 512, 1) 145
_________________________________________________________________
flatten_4 (Flatten) (None, 262144) 0
_________________________________________________________________
dense_13 (Dense) (None, 256) 67109120
_________________________________________________________________
dense_14 (Dense) (None, 64) 16448
_________________________________________________________________
dense_15 (Dense) (None, 32) 2080
_________________________________________________________________
dense_16 (Dense) (None, 9) 297
=================================================================
Total params: 67,244,507
Trainable params: 67,244,507
Non-trainable params: 0
_________________________________________________________________
这是错误:
InvalidArgumentError Traceback (most recent call last)
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1658 try:
-> 1659 c_op = c_api.TF_FinishOperation(op_desc)
1660 except errors.InvalidArgumentError as e:
InvalidArgumentError: Dimensions must be equal, but are 1 and 64 for 'loss_1/zero_padding2d_5_loss/MatMul' (op: 'BatchMatMul') with input shapes: [?,64,64,1], [1,64,64,?].
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-11-0e924885fc6b> in <module>
40 autoencoder = Model(input_layer, [encoded_layer,output_layer])
41 autoencoder.summary()
---> 42 autoencoder.compile(optimizer='adadelta', loss=[custom_loss1,custom_loss2])
43 autoencoder.fit(x_train,[x_train, y_train],batch_size=32,epochs=3,shuffle=True,
44 validation_data=(x_val, [x_val,y_val]))
~/anaconda3/lib/python3.6/site-packages/keras/engine/training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, **kwargs)
340 with K.name_scope(self.output_names[i] + '_loss'):
341 output_loss = weighted_loss(y_true, y_pred,
--> 342 sample_weight, mask)
343 if len(self.outputs) > 1:
344 self.metrics_tensors.append(output_loss)
~/anaconda3/lib/python3.6/site-packages/keras/engine/training_utils.py in weighted(y_true, y_pred, weights, mask)
402 """
403 # score_array has ndim >= 2
--> 404 score_array = fn(y_true, y_pred)
405 if mask is not None:
406 # Cast the mask to floatX to avoid float64 upcasting in Theano
<ipython-input-11-0e924885fc6b> in custom_loss1(y_true, y_pred)
2 #Wrappers for keras
3 def custom_loss1(y_true,y_pred):
----> 4 dcor = -1*distance_correlation(y_true,encoded_layer)
5 return dcor
6
<ipython-input-6-f282528532cc> in distance_correlation(y_true, y_pred)
2 pred_r = tf.reduce_sum(y_pred*y_pred,1)
3 pred_r = tf.reshape(pred_r,[-1,1])
----> 4 pred_d = pred_r - 2*tf.matmul(y_pred,tf.transpose(y_pred))+tf.transpose(pred_r)
5 true_r = tf.reduce_sum(y_true*y_true,1)
6 true_r = tf.reshape(true_r,[-1,1])
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py in matmul(a, b, transpose_a, transpose_b, adjoint_a, adjoint_b, a_is_sparse, b_is_sparse, name)
2415 adjoint_b = True
2416 return gen_math_ops.batch_mat_mul(
-> 2417 a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)
2418
2419 # Neither matmul nor sparse_matmul support adjoint, so we conjugate
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_math_ops.py in batch_mat_mul(x, y, adj_x, adj_y, name)
1421 adj_y = _execute.make_bool(adj_y, "adj_y")
1422 _, _, _op = _op_def_lib._apply_op_helper(
-> 1423 "BatchMatMul", x=x, y=y, adj_x=adj_x, adj_y=adj_y, name=name)
1424 _result = _op.outputs[:]
1425 _inputs_flat = _op.inputs
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
786 op = g.create_op(op_type_name, inputs, output_types, name=scope,
787 input_types=input_types, attrs=attr_protos,
--> 788 op_def=op_def)
789 return output_structure, op_def.is_stateful, op
790
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
505 'in a future version' if date is None else ('after %s' % date),
506 instructions)
--> 507 return func(*args, **kwargs)
508
509 doc = _add_deprecated_arg_notice_to_docstring(
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in create_op(***failed resolving arguments***)
3298 input_types=input_types,
3299 original_op=self._default_original_op,
-> 3300 op_def=op_def)
3301 self._create_op_helper(ret, compute_device=compute_device)
3302 return ret
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
1821 op_def, inputs, node_def.attr)
1822 self._c_op = _create_c_op(self._graph, node_def, grouped_inputs,
-> 1823 control_input_ops)
1824
1825 # Initialize self._outputs.
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1660 except errors.InvalidArgumentError as e:
1661 # Convert to ValueError for backwards compatibility.
-> 1662 raise ValueError(str(e))
1663
1664 return c_op
ValueError: Dimensions must be equal, but are 1 and 64 for 'loss_1/zero_padding2d_5_loss/MatMul' (op: 'BatchMatMul') with input shapes: [?,64,64,1], [1,64,64,?].
最佳答案
你有两个损失函数,所以你必须传递两个 y
(基本事实)用于评估与预测有关的损失。
您的第一个预测是层 encoded_layer
的输出大小为 (None, 8, 8, 128)
从 model.summary 中观察到 conv2d_59 (Conv2D)
但是您传递的内容适合 y
是[x_train, y_train]
. loss_1 期望大小为 (None, 8, 8, 128)
的输入但你正在通过 x_train
它有不同的大小。
如果你想要 loss_1
找到输入图像与编码图像的相关性,然后堆叠卷积,这样卷积的输出将产生与 x_train 图像形状相同的形状。使用 model.summary
查看卷积的输出形状。
不使用卷积层的填充、步长和内核大小来获得所需的卷积输出大小。使用公式 W2=(W1−F+2P)/S+1
和 H2=(H1−F+2P)/S+1
找到卷积的输出宽度和高度。检查这个reference
您的方法有两个主要问题。
下面是工作代码。但是,对于损失 1,我使用了两个图像的 l2 范数。如果你想使用相关性,那么你必须以某种方式将它转换为张量运算(这与这个问题不同)
def image_loss(y_true,y_pred):
return tf.norm(y_true - y_pred)
def label_loss(y_true,y_pred):
return categorical_crossentropy(y_true, y_pred)
input_img = Input(shape=(64, 64, 1))
enocded_imag = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
enocded_imag = MaxPooling2D((2, 2), padding='same')(enocded_imag)
enocded_imag = Conv2D(8, (3, 3), activation='relu', padding='same')(enocded_imag)
enocded_imag = MaxPooling2D((2, 2), padding='same')(enocded_imag)
enocded_imag = Conv2D(8, (3, 3), activation='relu', padding='same')(enocded_imag)
enocded_imag = MaxPooling2D((2, 2), padding='same')(enocded_imag)
decoded_imag = Conv2D(8, (2, 2), activation='relu', padding='same')(enocded_imag)
decoded_imag = UpSampling2D((2, 2))(decoded_imag)
decoded_imag = Conv2D(8, (3, 3), activation='relu', padding='same')(decoded_imag)
decoded_imag = UpSampling2D((2, 2))(decoded_imag)
decoded_imag = Conv2D(16, (3, 3), activation='relu', padding='same')(decoded_imag)
decoded_imag = UpSampling2D((2, 2))(decoded_imag)
decoded_imag = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(decoded_imag)
flat_layer = Flatten()(enocded_imag)
dense_layer = Dense(32,activation = "relu")(flat_layer)
output_layer = Dense(9, activation = "softmax")(dense_layer)
model = Model(input_img, [decoded_imag, output_layer])
model.compile(optimizer='adadelta', loss=[image_loss, label_loss])
images = np.random.randn(10,64,64,1)
model.fit(images, [images, np.random.randn(10,9)])
损失函数distance_correlation
您已经编码假设 y_true
中的每一行和 y_pred
表示图像。当您使用 Dense
层它会工作因为Dense
层输出一批(行)向量,其中每个向量代表一个单独的图像。但是,二维卷积对具有多个 channel 的一批二维张量进行操作(您只有一个 channel )。所以要使用 distance_correlation
损失函数,你必须 reshape 你的张量,使每一行对应一个图像。添加以下两行以 reshape 您的张量。
def distance_correlation(y_true,y_pred):
y_true = tf.reshape(tf.squeeze(y_true), [-1,64*64])
y_pred = tf.reshape(tf.squeeze(y_pred), [-1,64*64])
.... REST OF THE CODE ....
关于python - Keras 值错误 : Dimensions must be equal issue,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56302243/
我的问题:非常具体。我正在尝试想出解析以下文本的最简单方法: ^^domain=domain_value^^version=version_value^^account_type=account_ty
好吧,这就是我的困境: 我正在为 Reddit 子版 block 开发常见问题解答机器人。我在 bool 逻辑方面遇到了麻烦,需要一双更有经验的眼睛(这是我在 Python 中的第一次冒险)。现在,该
它首先遍历所有 y 值,然后遍历所有 x 值。我需要 X 和 y 同时改变。 For x = 3 To lr + 1 For y = 2 To lr anyl.Cells(x, 1)
假设我有一个包含 2 列的 Excel 表格:单元格 A1 到 A10 中的日期和 B1 到 B10 中的值。 我想对五月日期的所有值求和。我有3种可能性: {=SUM((MONTH(A1:A10)=
如何转换 Z-score来自 Z-distribution (standard normal distribution, Gaussian distribution)到 p-value ?我还没有找到
我正在重写一些 Javascript 代码以在 Excel VBA 中工作。由于在这个网站上搜索,我已经设法翻译了几乎所有的 Javascript 代码!但是,有些代码我无法准确理解它在做什么。这是一
我遇到过包含日期格式的时间戳日期的情况。然后我想构建一个图表,显示“点击”项目的数量“每天”, //array declaration $array1 = array("Date" => 0); $a
我是scala的新手! 我的问题是,是否有包含成员的案例类 myItem:Option[String] 当我构造类时,我需要将字符串内容包装在: Option("some string") 要么 So
我正在用 PHP 创建一个登录系统。我需要用户使用他或她的用户名或电子邮件或电话号码登录然后使用密码。因为我知道在 Java 中我们会像 email==user^ username == user 这
我在 C++ 项目上使用 sqlite,但是当我在具有文本值的列上使用 WHERE 时出现问题 我创建了一个 sqlite 数据库: CREATE TABLE User( id INTEGER
当构造函数是显式时,它不用于隐式转换。在给定的代码片段中,构造函数被标记为 explicit。那为什么在 foo obj1(10.25); 情况下它可以工作,而在 foo obj2=10.25; 情况
我知道这是一个主观问题,所以如果需要关闭它,我深表歉意,但我觉得它经常出现,让我想知道是否普遍偏爱一种形式而不是另一种形式。 显然,最好的答案是“重构代码,这样你就不需要测试是否存在错误”,但有时没有
这两个 jQuery 选择器有什么区别? 以下是来自 w3schools.com 的定义: [attribute~=value] 选择器选择带有特定属性,其值包含特定字符串。 [attribute*=
为什么我们需要CSS [attribute|=value] Selector根本当 CSS3 [attribute*=value] Selector基本上完成相同的事情,浏览器兼容性几乎相似?是否存在
我正在解决 regx 问题。我已经有一个像这样的 regx [0-9]*([.][0-9]{2})。这是 amont 格式验证。现在,通过此验证,我想包括不应提供 0 金额。比如 10 是有效的,但
我正在研究计算机科学 A 考试的样题,但无法弄清楚为什么以下问题的正确答案是正确的。 考虑以下方法。 public static void mystery(List nums) { for (
好的,我正在编写一个 Perl 程序,它有一个我收集的值的哈希值(完全在一个完全独立的程序中)并提供给这个 Perl 脚本。这个散列是 (string,string) 的散列。 我想通过 3 种方式对
我有一个表数据如下,来自不同的表。仅当第三列具有值“债务”并且第一列(日期)具有最大值时,我才想从第四列中获取最大值。最终值基于 MAX(DATE) 而不是 MAX(PRICE)。所以用简单的语言来说
我有一个奇怪的情况,只有错误状态保存到数据库中。当“状态”应该为 true 时,我的查询仍然执行 false。 我有具有此功能的 Controller public function change_a
我有一个交易表(针对所需列进行了简化): id client_id value 1 1 200 2 2 150 3 1
我是一名优秀的程序员,十分优秀!