- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我使用 Tensorflow 从头开始实现了一个基本的神经网络,并在 MNIST 时尚数据集上对其进行了训练。它经过正确训练,并在 10 个类别中输出大约 ~88-90%
的测试准确度。
现在我已经编写了 predict()
函数,它使用经过训练的权重预测给定图像的类别。这是代码:
def predict(images, trained_parameters):
Ws, bs = [], []
parameters = {}
for param in trained_parameters.keys():
parameters[param] = tf.convert_to_tensor(trained_parameters[param])
X = tf.placeholder(tf.float32, [images.shape[0], None], name = 'X')
Z_L = forward_propagation(X, trained_parameters)
p = tf.argmax(Z_L) # Working fine
# p = tf.argmax(tf.nn.softmax(Z_L)) # not working if softmax is applied
with tf.Session() as session:
prediction = session.run(p, feed_dict={X: images})
return prediction
这使用 forward_propagation()
函数返回最后一层 (Z
) 的加权和而不是事件 (A
) 因为TensorFlows tf.nn.softmax_cross_entropy_with_logits()
需要 Z
而不是 A
因为它将通过应用 softmax 计算 A
引用this link for details.
现在在 predict()
函数中,当我使用 Z
而不是 A
(激活)进行预测时,它工作正常。如果我在 Z
(这是最后一层的激活 A
)上计算 softmax,它会给出不正确的预测。
为什么它对加权和 Z
给出正确的预测?我们不应该首先应用 softmax 激活(并计算 A
)然后进行预测?
如果有人想查看我的整个代码,这里是我的 colab notebook 的链接:Link to Notebook Gist
那么我在这里缺少什么?
最佳答案
大多数 TF 函数,例如 tf.nn.softmax ,默认情况下假设批量维度是第一个 - 这是一种常见的做法。现在,我在您的代码中注意到您的批量维度是第二个,即您的输出形状是 (output_dim=10, batch_size=?)
,结果是 tf.nn.softmax
正在计算批量维度上的 softmax 激活。
不遵守约定并没有什么错 - 只是需要了解它们。沿第一个轴计算 softmax 的 argmax 应该会产生所需的结果(它相当于采用 logits 的 argmax):
p = tf.argmax(tf.nn.softmax(Z_L, axis=0))
此外,我还建议沿第一个轴计算 argmax,以防将多个图像输入网络。
关于python - 为什么对激活值 (Softmax) 的预测会给出错误的结果?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57346868/
如前所述 here ,交叉熵不是多标签分类的合适损失函数。我的问题是“这个事实是否也适用于 softmax 的交叉熵?”。如果是,如何与this part匹配的文件。 我应该提到我的问题的范围在cnt
这两个函数之间的区别已在这篇 pytorch 帖子中描述:What is the difference between log_softmax and softmax? 是:exp(x_i) / ex
我正在使用 tensorflow 编写一个简单的逻辑回归。我发现当使用 tf.nn.softmax 时,算法收敛得更快,最终精度更高。如果切换到我自己的 softmax 实现,网络收敛速度较慢,最终精
使用 softmax 作为 tf.keras 中的连续层和使用 softmax 作为密集层的激活函数有什么区别? tf.keras.layers.Dense(10, activation=tf.nn.
keras.activations.softmax 和 keras.layers.Softmax 之间有什么区别?为什么同一个激活函数有两种定义? keras.activations.softmax:
我正在使用带有二进制交叉熵的 Sigmoid 激活函数训练一个二进制分类器,它提供了大约 98% 的良好准确度。 当我使用带有 categorical_crossentropy 的 softmax 进
我正在尝试实现类似完全卷积网络的东西,其中最后一个卷积层使用过滤器大小 1x1 并输出“分数”张量。分数张量的形状为 [Batch, height, width, num_classes]。 我的问题
我目前正在用 Java 实现我自己的神经网络。我已经实现了一些常见的激活函数,例如 Sigmoid 或 ReLU,但我不知道如何实现 Softmax。 我想要一个像这样的方法 private doub
我目前正在用 Java 实现我自己的神经网络。我已经实现了一些常见的激活函数,例如 Sigmoid 或 ReLU,但我不知道如何实现 Softmax。 我想要一个像这样的方法 private doub
我在 github 上找到了一个很好的强化学习示例,我想使用它。我的问题是输出是正态分布层(下面的代码),因为它用于连续 Action 空间,而我想将它用于离散 Action 空间,其中模型有 4 个
我已经学习了 ML,并且一直在 Andrew N.G 的 coursera 类(class)中学习 DL,每次他谈到线性分类器时,权重都只是一个一维向量。即使在分配期间,当我们将图像滚动到一维向量(像
我一直在研究斯坦福的深度学习教程,但我在其中一个练习(带有 softmax 输出层的神经网络)上遇到了问题。这是我在 R 中的实现: train <- function(training.set, l
我正在 Octave 中实现 softmax 回归。目前,我正在使用使用以下成本函数和导数的非矢量化实现。 来源:Softmax Regression 现在我想在 Octave 中实现它的矢量化版本。
我是机器学习的新手,正在学习如何在 python 中实现 softmax,我正在关注以下线程 Softmax function - python 我在做一些分析,如果我们有一个数组 batch = n
下面是我尝试计算 softmax 的一小段代码。它适用于单个阵列。但是对于更大的数字,比如 1000 等,它会爆炸 import numpy as np def softmax(x): print
例如,我有一个 CNN,它试图从 MNIST 数据集(使用 Keras 编写的代码)中预测数字。它有 10 个输出,形成 softmax 层。只有一个输出可以为真(独立于 0 到 9 的每个数字):
pytorch教程 ( https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-bli
我找到了一些 MNIST 手写字符分类问题的示例代码。代码开头如下: import tensorflow as tf # Load in the data mnist = tf.keras.datas
这是 Keras 模型的最后一层。 model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossent
在神经网络的输出层中,通常使用softmax函数来近似概率分布: 由于指数的原因,计算成本很高。为什么不简单地执行 Z 变换,使所有输出均为正,然后通过将所有输出除以所有输出之和来进行归一化? 最佳答
我是一名优秀的程序员,十分优秀!