gpt4 book ai didi

python - 将RGB图像转换为黑白PIL手部识别

转载 作者:太空宇宙 更新时间:2023-11-04 01:50:52 24 4
gpt4 key购买 nike

我试图用 python 编写与此处所写相同的代码,但我的代码没有产生好的结果。我的目标是获取 RGB 图像,调整大小并转换为 YCbCr,然后将背景像素值设置为 0,将手部像素值设置为 1。有人可以帮我使用 PIL 在 Python 中编写这段代码吗?

(我正在尝试复制的代码,我在执行步骤 3-6 时遇到了一些问题)

function image_out = processSkinImage(filename)
Step 1...
% Read the image
original = imread(filename);
...
Step 2...
% Resize the image to 50x50
image_resized = imresize(original, scale);
[M N Z] = size(image_resized);

% Initialize the output image
image_out = zeros(height,width);
image_out = zeros(M,N);
...
Step 3...
% Convert the image from RGB to YCbCr
img_ycbcr = rgb2ycbcr(image_resized);
Cb = img_ycbcr(:,:,2);
Cr = img_ycbcr(:,:,3);
...
Step 4...
% Get the central color of the image
% Expected the hand to be in the central of the image
central_color = img_ycbcr(int32(M/2),int32(N/2),:);
Cb_Color = central_color(:,:,2);
Cr_Color = central_color(:,:,3);
% Set the range
Cb_Difference = 15;
Cr_Difference = 10;
...
Step 5...
% Detect skin pixels
[r,c,v] = find(Cb>=Cb_Color-Cr_Difference & Cb<=Cb_Color+Cb_Difference & Cr>=Cr_Color-Cr_Difference & Cr<=Cr_Color+Cr_Difference);
...
Step 6...
% Mark detected pixels
for i=1:match_count
image_out(r(i),c(i)) = 1;
end
end

这是我写的代码:

from PIL import Image as im

image = im.open('/Users/eitan/Desktop/eell.jpg')
image = image.resize((50,50), im.NEAREST)
grayScale = image.convert(mode='L')

width, height = grayScale.size
mid_pixel=grayScale.getpixel((width/2,height/2))
print (mid_pixel)

pixels = grayScale.load()

for i in range(grayScale.size[0]): # for every col:
for j in range(grayScale.size[1]): # For every row

if grayScale.getpixel((i,j)) < mid_pixel+40 and grayScale.getpixel((i,j)) > mid_pixel-15:
pixels[i,j] = 255

else:
pixels[i, j] = 0

grayScale.show()

This is an example of an image the code would get

And this is what the result should look like

如果有人能帮我用 python 编写这段代码,那就太好了!

最佳答案

您可以这样处理,我使用的是 HSV 色彩空间而不是 YCbCr 色彩空间:

#!/usr/bin/env python3

import numpy as np
from PIL import Image

# Open image and convert to HSV colourspace
im = Image.open('hand.png').convert('HSV')

# Convert to Numpy array
ni = np.array(im)

# Get H, S and V of central pixel - consider taking a median of a larger area here
h,s,v = ni[int(ni.shape[0]/2), int(ni.shape[1]/2)]

# Separate each channel to own array
H = ni[:,:,0]
S = ni[:,:,1]
V = ni[:,:,2]

# Permissible +/- tolerances on each channel
deltah = 20
deltas = 80
deltav = 50

# Make masks of pixels with acceptable H, S and V
hmask = np.where((H > h-deltah) & (H < h+deltah), 255, 0).astype(np.uint8)
smask = np.where((S > s-deltas) & (S < s+deltas), 255, 0).astype(np.uint8)
vmask = np.where((V > v-deltav) & (V < v+deltav), 255, 0).astype(np.uint8)

# Save as images for inspection
Image.fromarray(hmask).save('hmask.png')
Image.fromarray(smask).save('smask.png')
Image.fromarray(vmask).save('vmask.png')

生成的色相 mask :

enter image description here

生成的饱和度蒙版:

enter image description here

结果值掩码:

enter image description here

然后您可以将蒙版与或或组合在一起以获得更复杂的蒙版组合。

关于python - 将RGB图像转换为黑白PIL手部识别,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58051929/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com