- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在编写一个 c 脚本来将 pi 近似与 OpenMp 并行化。我认为我的代码运行良好,输出令人信服。我现在用 4 个线程运行它。我不确定的是这段代码是否容易受到竞争条件的影响?如果是,我该如何协调这段代码中的线程操作?
代码如下:
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <omp.h>
double sample_interval(double a, double b) {
double x = ((double) rand())/((double) RAND_MAX);
return (b-a)*x + a;
}
int main (int argc, char **argv) {
int N = atoi( argv[1] ); // convert command-line input to N = number of points
int i;
int NumThreads = 4;
const double pi = 3.141592653589793;
double x, y, z;
double counter = 0;
#pragma omp parallel firstprivate(x, y, z, i) reduction(+:counter) num_threads(NumThreads)
{
srand(time(NULL));
for (int i=0; i < N; ++i)
{
x = sample_interval(-1.,1.);
y = sample_interval(-1.,1.);
z = ((x*x)+(y*y));
if (z<= 1)
{
counter++;
}
}
}
double approx_pi = 4.0 * counter/ (double)N;
printf("%i %1.6e %1.6e\n ", N, 4.0 * counter/ (double)N, fabs(4.0 * counter/ (double)N - pi) / pi);
return 0;
}
我还想知道随机数的种子应该在并行化内部还是外部声明。我的输出看起来像这样:
10 3.600000e+00 1.459156e-01
100 3.160000e+00 5.859240e-03
1000 3.108000e+00 1.069287e-02
10000 3.142400e+00 2.569863e-04
100000 3.144120e+00 8.044793e-04
1000000 3.142628e+00 3.295610e-04
10000000 3.141379e+00 6.794439e-05
100000000 3.141467e+00 3.994585e-05
1000000000 3.141686e+00 2.971945e-05
目前看起来还不错。非常欢迎您提出有关比赛条件和种子放置的建议。
最佳答案
我看到您的代码中存在一些问题。主要的是从我的角度来看,它不是并行化的。或者更准确地说,您在编译时没有启用您在 OpenMP 中引入的并行性。这是人们可以看到的方式:
代码并行化的方式,主for
循环应该被所有线程完整执行(这里没有工作共享,没有#pragma omp parallel for
, 只有一个 #pragma omp parallel
)。因此,考虑到您将线程数设置为 4,全局迭代次数应为 4*N
。因此,您的输出应该慢慢收敛到 4*Pi,而不是 Pi。
的确,我在我的笔记本电脑上试过你的代码,在 OpenMP 支持下编译它,这几乎就是我得到的。但是,当我不启用 OpenMP 时,我会得到类似于您的输出。所以总而言之,您需要:
NumThreads
以获得 Pi 的“有效”近似值(或使用 #pragma omp for
将循环分配到 N
> 例如)但那是如果/当您的代码在其他地方是正确的,但现在还不是。正如 BitTickler 已经暗示的那样,rand()
不是线程安全的。所以你必须去寻找另一个随机数生成器,这将允许你私有(private)化它的状态。例如,这可能是 rand_r()
。也就是说,这仍然有很多问题:
rand()
/rand_r()
在随机性和周期性方面是一个糟糕的 RNG。在增加尝试次数的同时,您将快速遍历 RNG 期间并一遍又一遍地重复相同的序列。你需要更强大的东西来做任何严肃的事情。无论如何,底线是:
drand48_r()
或 random_r()
适合 Linux 上的玩具代码)这完成了(连同一些小的修复),您的代码将变成如下示例:
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <omp.h>
typedef struct drand48_data RNGstate;
double sample_interval(double a, double b, RNGstate *state) {
double x;
drand48_r(state, &x);
return (b-a)*x + a;
}
int main (int argc, char **argv) {
int N = atoi( argv[1] ); // convert command-line input to N = number of points
int NumThreads = 4;
const double pi = 3.141592653589793;
double x, y, z;
double counter = 0;
time_t ctime = time(NULL);
#pragma omp parallel private(x, y, z) reduction(+:counter) num_threads(NumThreads)
{
RNGstate state;
srand48_r(ctime+omp_get_thread_num(), &state);
for (int i=0; i < N; ++i) {
x = sample_interval(-1, 1, &state);
y = sample_interval(-1, 1, &state);
z = ((x*x)+(y*y));
if (z<= 1) {
counter++;
}
}
}
double approx_pi = 4.0 * counter / (NumThreads * N);
printf("%i %1.6e %1.6e\n ", N, approx_pi, fabs(approx_pi - pi) / pi);
return 0;
}
我是这样编译的:
gcc -std=gnu99 -fopenmp -O3 -Wall pi.c -o pi_omp
关于c - 蒙特卡罗 pi 近似的并行化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40276899/
所以我必须用以下方法来近似 Pi:4*(1-1/3+1/5-1/7+1/9-...)。它也应该基于迭代次数。所以函数应该是这样的: >>> piApprox(1) 4.0 >>> piApprox(1
输入:图 G 输出:多个独立集,使得一个节点对所有独立集的成员资格是唯一的。因此,节点与它自己的集合中的任何节点都没有连接。这是一个示例路径。 由于这里需要澄清,因此再次改写: 将给定的图划分为多个集
我已经使用查找表和低阶多项式近似实现了定点 log2 函数,但对整个 32 位定点范围 [-1,+1) 的准确度不太满意。输入格式为 s0.31,输出格式为 s15.16。 我在这里发布这个问题,以便
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
我的目标是近似二项式变量总和的分布。我使用以下纸张The Distribution of a Sum of Binomial Random Variables作者:肯·巴特勒和迈克尔·斯蒂芬斯。 我想
我知道有方法 approximate cubic Bezier curves ( this page 也是一个很好的引用),但是有没有更快的方法来逼近 N 次贝塞尔曲线?还是只能使用下面的概括? 来自
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它有助于我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注意
我是 C++ 和编码本身的初学者,所以请原谅任何词汇错误。我找不到这个具体问题,但在互联网上找到了类似的问题,但我仍然很难获得我需要的结果。 所以我使用莱布尼茨公式来近似 pi,即: pi = 4 ·
有多种方法可以通过显示名称查找联系人。例如这个答案Android - Find a contact by display name 但是我需要找到模糊匹配的联系人。例如如果找不到“Kim”,我需要返回
我一直在尝试使用以下代码使用级数表示来近似 e 以获得尽可能多的精度数字,但无论我计算多少项,精度数字的数量似乎都保持不变。即: 2.718281984329223632812500000000000
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
大多数拥有计算机科学学位的人肯定知道什么是Big O stands for。 它有助于我们衡量一个算法的实际效率,如果您知道在what category the problem you are try
大多数拥有计算机科学学位的人肯定知道什么是Big O stands for。 它有助于我们衡量一个算法的实际效率,如果您知道在what category the problem you are try
我做了很多随机的数学程序来帮助我完成作业(合成除法是最有趣的),现在我想反转一个激进的表达式。 例如,在我方便的 TI 计算器中我得到 .2360679775 好吧,我想将该数字转换为等效的无理数表达
我可以通过 CPU 分析器看到,compute_variances() 是我项目的瓶颈。 % cumulative self self total
大多数拥有 CS 学位的人肯定知道什么 Big O stands for . 它帮助我们衡量算法的可扩展性。 但我很好奇,你如何计算或近似算法的复杂性? 最佳答案 我会尽我所能用简单的术语在这里解释它
这是迄今为止我的代码, from math import * def main(): sides = eval(input("Enter the number of sides:"))
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 这个问题是由于错别字或无法再重现的问题引起的。虽然类似的问题可能是on-topi
大多数拥有 CS 学位的人肯定知道什么 Big O stands for . 它帮助我们衡量算法的扩展性。 但我很好奇,你如何计算或近似算法的复杂性? 最佳答案 我会尽我所能用简单的术语在这里解释它,
我是一名优秀的程序员,十分优秀!