gpt4 book ai didi

python - Python绘制网格,颜色对应不同的值

转载 作者:太空宇宙 更新时间:2023-11-04 01:06:15 30 4
gpt4 key购买 nike

我正在尝试绘制一个网格,其中为每个值绘制相应的颜色。例如:

[[1,1,1,1,1,1,1,1,1],    
[1,0,0,0,0,0,0,0,1],
[1,0,0,0,2,2,0,0,1],
[1,0,0,0,2,2,0,0,1],
[1,1,1,1,1,1,1,1,1]]

将显示为一个 9x5 的网格,带有蓝色边框(代表 1),填充黑色(代表 0),底部有一个 2x2 的红色 block (代表 2)。

显然这可以用 imshow 来完成,但我不知道语法是什么。

在此先感谢您的帮助!

最佳答案

一种使用 matplotlib 和 NumPy 的解决方案:

enter image description here

import numpy as np
import matplotlib.pyplot as plt


def show_values(pc, fmt="%.2f", **kw):
'''
Heatmap with text in each cell with matplotlib's pyplot
Source: http://stackoverflow.com/a/25074150/395857
By HYRY
'''
from itertools import izip
pc.update_scalarmappable()
ax = pc.get_axes()
for p, color, value in izip(pc.get_paths(), pc.get_facecolors(), pc.get_array()):
x, y = p.vertices[:-2, :].mean(0)
if np.all(color[:3] > 0.5):
color = (0.0, 0.0, 0.0)
else:
color = (1.0, 1.0, 1.0)
ax.text(x, y, fmt % value, ha="center", va="center", color=color, **kw)

def cm2inch(*tupl):
'''
Specify figure size in centimeter in matplotlib
Source: http://stackoverflow.com/a/22787457/395857
By gns-ank
'''
inch = 2.54
if type(tupl[0]) == tuple:
return tuple(i/inch for i in tupl[0])
else:
return tuple(i/inch for i in tupl)

def heatmap(AUC, title, xlabel, ylabel, xticklabels, yticklabels):
'''
Inspired by:
- http://stackoverflow.com/a/16124677/395857
- http://stackoverflow.com/a/25074150/395857
'''

# Plot it out
fig, ax = plt.subplots()
c = ax.pcolor(AUC, edgecolors='k', linestyle= 'dashed', linewidths=0.2, cmap='YlOrRd', vmin=0.0, vmax=2.0)

# put the major ticks at the middle of each cell
ax.set_yticks(np.arange(AUC.shape[0]) + 0.5, minor=False)
ax.set_xticks(np.arange(AUC.shape[1]) + 0.5, minor=False)

# set tick labels
#ax.set_xticklabels(np.arange(1,AUC.shape[1]+1), minor=False)
ax.set_xticklabels(xticklabels, minor=False)
ax.set_yticklabels(yticklabels, minor=False)

# set title and x/y labels
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)

# Remove last blank column
plt.xlim( (0, AUC.shape[1]) )

# Turn off all the ticks
ax = plt.gca()
for t in ax.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False

# Add color bar
plt.colorbar(c)

# Add text in each cell
show_values(c)

# resize
fig = plt.gcf()
fig.set_size_inches(cm2inch(40, 20))



def main():
data = np.array([[1,1,1,1,1,1,1,1,1],
[1,0,0,0,0,0,0,0,1],
[1,0,0,0,2,2,0,0,1],
[1,0,0,0,2,2,0,0,1],
[1,1,1,1,1,1,1,1,1]])
x_axis_size = data.shape[1]
y_axis_size = data.shape[0]
title = "Title"
xlabel= "xlabel"
ylabel="ylabel"
xticklabels = range(1, x_axis_size+1) # could be text
yticklabels = range(1, y_axis_size+1) # could be text
heatmap(data, title, xlabel, ylabel, xticklabels, yticklabels)
plt.savefig('image_output.png', dpi=300, format='png', bbox_inches='tight') # use format='svg' or 'pdf' for vectorial pictures
plt.show()


if __name__ == "__main__":
main()
#cProfile.run('main()') # if you want to do some profiling

关于python - Python绘制网格,颜色对应不同的值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30222747/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com