- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用递归特征估计 (RFE) 进行特征选择。它的工作原理是迭代地采用 SVM 分类器等估计器,将其拟合到数据中,然后删除权重(系数)最低的特征。
我能够将其与数据相匹配并执行特征选择。但是,然后我想从 RFE 中恢复每个特征的学习权重。
我使用以下代码初始化分类器对象和 RFE 对象,并将它们与数据相匹配。
svc = SVC(C=1, kernel="linear")
rfe = RFE(estimator=svc, n_features_to_select=300, step=0.1)
rfe.fit(all_training, training_labels)
然后我尝试打印系数
print ('coefficients',svc.coef_)
并接收:
AttributeError: 'RFE' object has no attribute 'dual_coef_'
根据 sklearn documentation ,分类器对象应具有此属性:
coef_ : array, shape = [n_class-1, n_features]
Weights assigned to the features (coefficients in the primal problem). This is only
available in the case of a linear kernel.
coef_ is a readonly property derived from dual_coef_ and support_vectors_.
我使用的是线性内核,所以这不是问题。
谁能解释为什么我无法恢复系数?有办法解决这个问题吗?
最佳答案
发布 2 分钟后,我再次查看了 RFE 的文档并实现了部分解决方案。
RFE 对象将估算器对象作为属性。因此我可以调用
print ('coefficients',rfe.estimator_.coef_)
并获取最重要的特征的系数。 (即这会返回前 300 个特征的系数,因为我之前设置了 n_features_to_select=300)。
但是,我仍然无法获得其余未选择特征的系数。对于 RFE 的每次迭代,它都会训练分类器并为每个特征获取新的系数。理想情况下,我想访问在每次迭代中学习的系数。
(因此,如果我从 3000 个特征开始,并使用步长 300 个特征,第一次迭代我想要访问 3000 个系数,下一次迭代我想要 2700 个系数用于剩余的 2700 个特征,第三次迭代我想要访问2400个系数等)
关于python - 如何使用sklearn从RFE中获取系数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34204898/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!