gpt4 book ai didi

python / NumPy : Conditional simulation from a multivatiate distribution

转载 作者:太空宇宙 更新时间:2023-11-04 00:47:37 25 4
gpt4 key购买 nike

使用 numpy 我可以无条件地模拟多元正态分布

mean = [0, 0]
cov = [[1, 0], [0, 100]] # diagonal covariance
x, y = np.random.multivariate_normal(mean, cov, 5000).T

假设我有 5000 个 x 的实现,我如何从相同的分布模拟 y?我正在寻找可以扩展到任意维度的通用解决方案。

最佳答案

Looking up in Eaton, Morris L. (1983)。多元统计:向量空间方法,我收集了以下 4 个变量系统的示例解决方案,具有 2 个因变量(前两个)和 2 个自变量(后两个)

import numpy as np

mean = np.array([1, 2, 3, 4])
cov = np.array(
[[ 1.0, 0.5, 0.3, -0.1],
[ 0.5, 1.0, 0.1, -0.2],
[ 0.3, 0.1, 1.0, -0.3],
[-0.1, -0.2, -0.3, 0.1]]) # diagonal covariance

c11 = cov[0:2, 0:2] # Covariance matrix of the dependent variables
c12 = cov[0:2, 2:4] # Custom array only containing covariances, not variances
c21 = cov[2:4, 0:2] # Same as above
c22 = cov[2:4, 2:4] # Covariance matrix of independent variables

m1 = mean[0:2].T # Mu of dependent variables
m2 = mean[2:4].T # Mu of independent variables

conditional_data = np.random.multivariate_normal(m2, c22, 1000)

conditional_mu = m2 + c12.dot(np.linalg.inv(c22)).dot((conditional_data - m2).T).T
conditional_cov = np.linalg.inv(np.linalg.inv(cov)[0:2, 0:2])

dependent_data = np.array([np.random.multivariate_normal(c_mu, conditional_cov, 1)[0] for c_mu in conditional_mu])

print np.cov(dependent_data.T, conditional_data.T)
>> [[ 1.0012233 0.49592165 0.28053086 -0.08822537]
[ 0.49592165 0.98853341 0.11168755 -0.22584691]
[ 0.28053086 0.11168755 0.91688239 -0.27867207]
[-0.08822537 -0.22584691 -0.27867207 0.94908911]]

这是可以接受的接近预定义的协方差矩阵。在 Wikipedia 上也简要描述了该解决方案

关于 python / NumPy : Conditional simulation from a multivatiate distribution,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38713746/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com