- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在 pandas dataframe 中有这个测试表
Leaf_category_id session_id product_id
0 111 1 987
3 111 4 987
4 111 1 741
1 222 2 654
2 333 3 321
这是我之前问题的延伸,@jazrael 回答了这个问题。 view answer
所以在获得 product_id 列中的值之后(只是一个假设,与我之前问题的输出略有不同,
|product_id |
---------------------------
|111,987,741,34,12 |
|987,1232 |
|654,12,324,465,342,324 |
|321,741,987 |
|324,654,862,467,243,754 |
|6453,123,987,741,34,12 |
等等,我想创建一个新列,其中一行中的所有值都应该与下一个和最后一个一起作为一个二元组。在行中与第一个组合,例如:
|product_id |Bigram
-------------------------------------------------------------------------
|111,987,741,34,12 |(111,987),**(987,741)**,(741,34),(34,12),(12,111)
|987,1232 |(987,1232),(1232,987)
|654,12,324,465,342,32 |(654,12),(12,324),(324,465),(465,342),(342,32),(32,654)
|321,741,987 |(321,741),**(741,987)**,(987,321)
|324,654,862 |(324,654),(654,862),(862,324)
|123,987,741,34,12 |(123,987),(987,741),(34,12),(12,123)
忽略**(稍后我会告诉你我为什么加星标)
实现二元组的代码是
for i in df.Leaf_category_id.unique():
print (df[df.Leaf_category_id == i].groupby('session_id')['product_id'].apply(lambda x: list(zip(x, x[1:]))).reset_index())
从这个 df,我想考虑 bigram 列并再创建一个名为 frequency 的列,它给出了 bigram 出现的频率。
Note* : (987,741) and (741,987) are to be considered as same and one dublicate entry should be removed and thus frequency of (987,741) should be 2. similar is the case with (34,12) it occurs two times, so frequency should be 2
|Bigram
---------------
|(111,987),
|**(987,741)**
|(741,34)
|(34,12)
|(12,111)
|**(741,987)**
|(987,321)
|(34,12)
|(12,123)
最终结果应该是。
|Bigram | frequency |
--------------------------
|(111,987) | 1
|(987,741) | 2
|(741,34) | 1
|(34,12) | 2
|(12,111) | 1
|(987,321) | 1
|(12,123) | 1
我希望在这里找到答案,请帮助我,我已经尽可能详细地阐述了。
最佳答案
试试这段代码
from itertools import combinations
import pandas as pd
df = pd.DataFrame.from_csv("data.csv")
#consecutive
grouped_consecutive_product_ids = df.groupby(['Leaf_category_id','session_id'])['product_id'].apply(lambda x: [tuple(sorted(pair)) for pair in zip(x,x[1:])]).reset_index()
df1=pd.DataFrame(grouped_consecutive_product_ids)
s=df1.product_id.apply(lambda x: pd.Series(x)).unstack()
df2=pd.DataFrame(s.reset_index(level=0,drop=True)).dropna()
df2.rename(columns = {0:'Bigram'}, inplace = True)
df2["freq"] = df2.groupby('Bigram')['Bigram'].transform('count')
bigram_frequency_consecutive = df2.drop_duplicates(keep="first").sort_values("Bigram").reset_index()
del bigram_frequency_consecutive["index"]
对于组合(所有可能的二元组)
from itertools import combinations
import pandas as pd
df = pd.DataFrame.from_csv("data.csv")
#combinations
grouped_combination_product_ids = df.groupby(['Leaf_category_id','session_id'])['product_id'].apply(lambda x: [tuple(sorted(pair)) for pair in combinations(x,2)]).reset_index()
df1=pd.DataFrame(grouped_combination_product_ids)
s=df1.product_id.apply(lambda x: pd.Series(x)).unstack()
df2=pd.DataFrame(s.reset_index(level=0,drop=True)).dropna()
df2.rename(columns = {0:'Bigram'}, inplace = True)
df2["freq"] = df2.groupby('Bigram')['Bigram'].transform('count')
bigram_frequency_combinations = df2.drop_duplicates(keep="first").sort_values("Bigram").reset_index()
del bigram_frequency_combinations["index"]
其中 data.csv
包含
Leaf_category_id,session_id,product_id
0,111,1,111
3,111,4,987
4,111,1,741
1,222,2,654
2,333,3,321
5,111,1,87
6,111,1,34
7,111,1,12
8,111,1,987
9,111,4,1232
10,222,2,12
11,222,2,324
12,222,2,465
13,222,2,342
14,222,2,32
15,333,3,321
16,333,3,741
17,333,3,987
18,333,3,324
19,333,3,654
20,333,3,862
21,222,1,123
22,222,1,987
23,222,1,741
24,222,1,34
25,222,1,12
结果 bigram_frequency_consecutive
将是
Bigram freq
0 (12, 34) 2
1 (12, 324) 1
2 (12, 654) 1
3 (12, 987) 1
4 (32, 342) 1
5 (34, 87) 1
6 (34, 741) 1
7 (87, 741) 1
8 (111, 741) 1
9 (123, 987) 1
10 (321, 321) 1
11 (321, 741) 1
12 (324, 465) 1
13 (324, 654) 1
14 (324, 987) 1
15 (342, 465) 1
16 (654, 862) 1
17 (741, 987) 2
18 (987, 1232) 1
结果 bigram_frequency_combinations
将是
Bigram freq
0 (12, 32) 1
1 (12, 34) 2
2 (12, 87) 1
3 (12, 111) 1
4 (12, 123) 1
5 (12, 324) 1
6 (12, 342) 1
7 (12, 465) 1
8 (12, 654) 1
9 (12, 741) 2
10 (12, 987) 2
11 (32, 324) 1
12 (32, 342) 1
13 (32, 465) 1
14 (32, 654) 1
15 (34, 87) 1
16 (34, 111) 1
17 (34, 123) 1
18 (34, 741) 2
19 (34, 987) 2
20 (87, 111) 1
21 (87, 741) 1
22 (87, 987) 1
23 (111, 741) 1
24 (111, 987) 1
25 (123, 741) 1
26 (123, 987) 1
27 (321, 321) 1
28 (321, 324) 2
29 (321, 654) 2
30 (321, 741) 2
31 (321, 862) 2
32 (321, 987) 2
33 (324, 342) 1
34 (324, 465) 1
35 (324, 654) 2
36 (324, 741) 1
37 (324, 862) 1
38 (324, 987) 1
39 (342, 465) 1
40 (342, 654) 1
41 (465, 654) 1
42 (654, 741) 1
43 (654, 862) 1
44 (654, 987) 1
45 (741, 862) 1
46 (741, 987) 3
47 (862, 987) 1
48 (987, 1232) 1
在上面的例子中,它同时分组
关于python - 从 pandas df 中的列创建一个二元组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40594210/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!