gpt4 book ai didi

python - TensorFlow 您必须使用 dtype float 为占位符张量 'Placeholder_2' 提供一个值

转载 作者:太空宇宙 更新时间:2023-11-04 00:41:13 25 4
gpt4 key购买 nike

我的代码因臭名昭著而失败:

InvalidArgumentError:您必须为占位符张量“Placeholder_2”提供一个 dtype float 的值 [[节点:Placeholder_2 = Placeholderdtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]]

这是我的代码:

logits = LeNet(x)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, one_hot_y)
loss_operation = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate = rate)
training_operation = optimizer.minimize(loss_operation)

def LeNet(x):
# Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer
mu = 0
sigma = 0.1

# SOLUTION: Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6.
conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 1, 6), mean = mu, stddev = sigma))
conv1_b = tf.Variable(tf.zeros(6))
conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b

# SOLUTION: Activation.
conv1 = tf.nn.relu(conv1)

#Hardcoded dropout
conv1 = tf.nn.dropout(conv1,0.9)

# SOLUTION: Pooling. Input = 28x28x6. Output = 14x14x6.
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

# SOLUTION: Layer 2: Convolutional. Output = 10x10x16.
conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma))
conv2_b = tf.Variable(tf.zeros(16))
conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b

# SOLUTION: Activation.
conv2 = tf.nn.relu(conv2)

# SOLUTION: Pooling. Input = 10x10x16. Output = 5x5x16.
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

# SOLUTION: Flatten. Input = 5x5x16. Output = 400.
fc0 = flatten(conv2)

# SOLUTION: Layer 3: Fully Connected. Input = 400. Output = 120.
fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma))
fc1_b = tf.Variable(tf.zeros(120))
fc1 = tf.matmul(fc0, fc1_W) + fc1_b

# SOLUTION: Activation.
fc1 = tf.nn.relu(fc1)

# SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 84.
fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma))
fc2_b = tf.Variable(tf.zeros(84))
fc2 = tf.matmul(fc1, fc2_W) + fc2_b

# SOLUTION: Activation.
fc2 = tf.nn.relu(fc2)

#Dropout layer
fc2 = tf.nn.dropout(fc2, keep_prob)

# SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 43.
fc3_W = tf.Variable(tf.truncated_normal(shape=(84, 43), mean = mu, stddev = sigma))
fc3_b = tf.Variable(tf.zeros(43))
logits = tf.matmul(fc2, fc3_W) + fc3_b

return logits

x = tf.placeholder(tf.float32, (None, 32, 32, 1))
grayscaleimage = np.reshape(image2Gray(image), (1,32,32,1))
# doesn't matter whether i use the below 2 lines or not
# ideally i should be able to just put the grayscaleimage ndarray into
# tensorflow as if I try to put something else, it complains that
# type should be ... or ... or...etc or ndarray
own_images = np.empty([0, 32, 32, 1], dtype = np.float32)
own_images = np.append(own_images, grayscaleimage, axis = 0)

output = tf.argmax(logits, 1)

with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
output = sess.run(output, feed_dict={x: (own_images)})
print(output)

最佳答案

我想通了这个问题。

Logits = LeNet(x)

LeNet(x) 的定义使用了一个未被馈送的“keep_prob”变量。

将代码更改为:

output = sess.run(output, feed_dict={x: own_images, keep_prob:1.0})

解决问题。

但是警告的话。如果您尝试在 LeNet 函数定义中注释掉 keep_prob 变量,它可能无法解决问题,因为您还必须刷新其他单元格中的函数定义和调用。

关于python - TensorFlow 您必须使用 dtype float 为占位符张量 'Placeholder_2' 提供一个值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41851657/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com