gpt4 book ai didi

python - Tensorflow:在 GPU 上运行训练阶段,在 CPU 上运行测试阶段

转载 作者:太空宇宙 更新时间:2023-11-04 00:39:06 25 4
gpt4 key购买 nike

我希望在完成并存储结果以加载我创建的模型并在 CPU 上运行其测试阶段后,在我的 GPU 上运行我的 tensorflow 代码的训练阶段。

我已经创建了这段代码(我已经放了其中的一部分,仅供引用,否则它会很大,我知道规则将包含一个功能齐全的代码,对此我深表歉意)。

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn.python.ops import rnn_cell, rnn

# Import MNIST data http://yann.lecun.com/exdb/mnist/
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x_train = mnist.train.images
# Check that the dataset contains 55,000 rows and 784 columns
N,D = x_train.shape

tf.reset_default_graph()
sess = tf.InteractiveSession()

x = tf.placeholder("float", [None, n_steps,n_input])
y_true = tf.placeholder("float", [None, n_classes])
keep_prob = tf.placeholder(tf.float32,shape=[])
learning_rate = tf.placeholder(tf.float32,shape=[])

#[............Build the RNN graph model.............]

sess.run(tf.global_variables_initializer())
# Because I am using my GPU for the training, I avoid allocating the whole
# mnist.validation set because of memory error, so I gragment it to
# small batches (100)
x_validation_bin, y_validation_bin = mnist.validation.next_batch(batch_size)
x_validation_bin = binarize(x_validation_bin, threshold=0.1)
x_validation_bin = x_validation_bin.reshape((-1,n_steps,n_input))

for k in range(epochs):

steps = 0

for i in range(training_iters):
#Stochastic descent
batch_x, batch_y = mnist.train.next_batch(batch_size)
batch_x = binarize(batch_x, threshold=0.1)
batch_x = batch_x.reshape((-1,n_steps,n_input))
sess.run(train_step, feed_dict={x: batch_x, y_true: batch_y,keep_prob: keep_prob,eta:learning_rate})

if do_report_err == 1:
if steps % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y_true: batch_y,keep_prob: 1.0})
# Calculate batch loss
loss = sess.run(total_loss, feed_dict={x: batch_x, y_true: batch_y,keep_prob: 1.0})
print("Iter " + str(i) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy = " + "{:.5f}".format(acc))
steps += 1




# Validation Accuracy and Cost
validation_accuracy = sess.run(accuracy,feed_dict={x:x_validation_bin, y_true:y_validation_bin, keep_prob:1.0})
validation_cost = sess.run(total_loss,feed_dict={x:x_validation_bin, y_true:y_validation_bin, keep_prob:1.0})

validation_loss_array.append(final_validation_cost)
validation_accuracy_array.append(final_validation_accuracy)
saver.save(sess, savefilename)
total_epochs = total_epochs + 1

np.savez(datasavefilename,epochs_saved = total_epochs,learning_rate_saved = learning_rate,keep_prob_saved = best_keep_prob, validation_loss_array_saved = validation_loss_array,validation_accuracy_array_saved = validation_accuracy_array,modelsavefilename = savefilename)

在那之后,我的模型已经成功训练并保存了相关数据,所以我希望加载文件并在模型中进行最后的训练和测试部分,但这次使用我的 CPU。原因是 GPU 无法处理 mnist.train.images 和 mnist.train.labels 的整个数据集。

因此,我手动选择这部分并运行它:

with tf.device('/cpu:0'):
# Initialise variables
sess.run(tf.global_variables_initializer())

# Accuracy and Cost
saver.restore(sess, savefilename)
x_train_bin = binarize(mnist.train.images, threshold=0.1)
x_train_bin = x_train_bin.reshape((-1,n_steps,n_input))
final_train_accuracy = sess.run(accuracy,feed_dict={x:x_train_bin, y_true:mnist.train.labels, keep_prob:1.0})
final_train_cost = sess.run(total_loss,feed_dict={x:x_train_bin, y_true:mnist.train.labels, keep_prob:1.0})

x_test_bin = binarize(mnist.test.images, threshold=0.1)
x_test_bin = x_test_bin.reshape((-1,n_steps,n_input))
final_test_accuracy = sess.run(accuracy,feed_dict={x:x_test_bin, y_true:mnist.test.labels, keep_prob:1.0})
final_test_cost = sess.run(total_loss,feed_dict={x:x_test_bin, y_true:mnist.test.labels, keep_prob:1.0})

但是我得到了一个 OMM GPU 内存错误,这对我来说没有意义,因为我认为我已经强制程序依赖 CPU。我没有在第一个(批处理训练)代码中放置命令 sess.close() ,但我不确定这是否真的是它背后的原因。我实际上关注了这篇文章for the CPU有什么建议如何只在 CPU 上运行最后一部分吗?

最佳答案

with tf.device() 语句仅适用于图构建,不适用于执行,因此在设备 block 内执行 sess.run 相当于没有设备完全没有。

要完成您想做的事,您需要构建单独的训练图和测试图,它们共享变量。

关于python - Tensorflow:在 GPU 上运行训练阶段,在 CPU 上运行测试阶段,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42650167/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com