- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我现在多次偶然发现使用 scipy.curve_fit
在 python 中进行拟合比使用其他工具(例如根 ( https://root.cern.ch/ )
例如,在拟合高斯分布时,使用 scipy 我主要得到一条直线:
对应代码:
def fit_gauss(y, x = None):
n = len(y) # the number of data
if x is None:
x = np.arange(0,n,1)
mean = y.mean()
sigma = y.std()
def gauss(x, a, x0, sigma):
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))
popt, pcov = curve_fit(gauss, x, y, p0=[max(y), mean, sigma])
plt.plot(x, y, 'b+:', label='data')
plt.plot(x, gauss(x, *popt), 'ro:', label='fit')
plt.legend()
plt.title('Gauss fit for spot')
plt.xlabel('Pixel (px)')
plt.ylabel('Intensity (a.u.)')
plt.show()
使用 ROOT,我得到了一个完美的契合,甚至没有给出启动参数:
同样,对应的代码:
import ROOT
import numpy as np
y = np.array([2., 2., 11., 0., 5., 7., 18., 12., 19., 20., 36., 11., 21., 8., 13., 14., 8., 3., 21., 0., 24., 0., 12., 0., 8., 11., 18., 0., 9., 21., 17., 21., 28., 36., 51., 36., 47., 69., 78., 73., 52., 81., 96., 71., 92., 70., 84.,72., 88., 82., 106., 101., 88., 74., 94., 80., 83., 70., 78., 85., 85., 56., 59., 56., 73., 33., 49., 50., 40., 22., 37., 26., 6., 11., 7., 26., 0., 3., 0., 0., 0., 0., 0., 3., 9., 0., 31., 0., 11., 0., 8., 0., 9., 18.,9., 14., 0., 0., 6., 0.])
x = np.arange(0,len(y),1)
#yerr= np.array([0.1,0.2,0.1,0.2,0.2])
graph = ROOT.TGraphErrors()
for i in range(len(y)):
graph.SetPoint(i, x[i], y[i])
#graph.SetPointError(i, yerr[i], yerr[i])
func = ROOT.TF1("Name", "gaus")
graph.Fit(func)
canvas = ROOT.TCanvas("name", "title", 1024, 768)
graph.GetXaxis().SetTitle("x") # set x-axis title
graph.GetYaxis().SetTitle("y") # set y-axis title
graph.Draw("AP")
有人可以向我解释一下,为什么结果差异如此之大? scipy 中的实现是否糟糕/依赖于良好的启动参数?有什么办法吗?我需要自动处理大量拟合,但无法访问目标计算机上的 ROOT,因此它只能使用 python。
当从 ROOT 拟合中获取结果并将它们作为开始参数提供给 scipy 时,拟合也适用于 scipy ...
最佳答案
如果没有实际数据,要重现您的结果并不容易,但如果使用人工创建的嘈杂数据,我觉得效果不错:
这是我正在使用的代码:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# your gauss function
def gauss(x, a, x0, sigma):
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))
# create some noisy data
xdata = np.linspace(0, 4, 50)
y = gauss(xdata, 2.5, 1.3, 0.5)
y_noise = 0.4 * np.random.normal(size=xdata.size)
ydata = y + y_noise
# plot the noisy data
plt.plot(xdata, ydata, 'bo', label='data')
# do the curve fit using your idea for the initial guess
popt, pcov = curve_fit(gauss, xdata, ydata, p0=[ydata.max(), ydata.mean(), ydata.std()])
# plot the fit as well
plt.plot(xdata, gauss(xdata, *popt), 'r-', label='fit')
plt.show()
和你一样,我也使用 p0=[ydata.max(), ydata.mean(), ydata.std()]
作为初始猜测,这似乎适用于不同的噪声强度。
编辑
我刚刚意识到你实际上提供了数据;然后结果如下所示:
代码:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def gauss(x, a, x0, sigma):
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))
ydata = np.array([2., 2., 11., 0., 5., 7., 18., 12., 19., 20., 36., 11., 21., 8., 13., 14., 8., 3., 21., 0., 24., 0., 12.,
0., 8., 11., 18., 0., 9., 21., 17., 21., 28., 36., 51., 36., 47., 69., 78., 73., 52., 81., 96., 71., 92., 70., 84.,72.,
88., 82., 106., 101., 88., 74., 94., 80., 83., 70., 78., 85., 85., 56., 59., 56., 73., 33., 49., 50., 40., 22., 37., 26.,
6., 11., 7., 26., 0., 3., 0., 0., 0., 0., 0., 3., 9., 0., 31., 0., 11., 0., 8., 0., 9., 18.,9., 14., 0., 0., 6., 0.])
xdata = np.arange(0, len(ydata), 1)
plt.plot(xdata, ydata, 'bo', label='data')
popt, pcov = curve_fit(gauss, xdata, ydata, p0=[ydata.max(), ydata.mean(), ydata.std()])
plt.plot(xdata, gauss(xdata, *popt), 'r-', label='fit')
plt.show()
关于python - 使用 Scipy 与 ROOT 等拟合(高斯),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42832373/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!