- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个专为多分类问题设计的 LSTM 模型。训练时,准确率实际上是 1.00。但仍然返回小的损失值。这是什么意思?所有目标都被正确预测。为什么损失值不能为零?
adadelta = Adadelta(clipnorm=1.)
model.compile(optimizer=adadelta,
loss='categorical_crossentropy',
sample_weight_mode='temporal',
metrics=['accuracy'])
损失值如下。
Epoch 12/12
1000/1000 [==============================] - 38s - loss: 1.2053e-04 - acc: 1.0000
最佳答案
网络正在优化损失。在您的情况下,损失是分类交叉熵。分类衡量正确概率的对数值。
网络预测的一个样本 y_pred
是这样的,y_true
是真正的目标值:y_true
是二进制的,因为你想要预测它是否属于某个类别,y_pred
是一个介于 0 和 1 之间的 float ,您可以将其解释为属于该类别的概率。
一个样本的公式是:
loss_sample = y_true * ln(y_pred) + (1-y_true) * ln(1-y_pred)
因此,如果 y_true
为 1(样本属于该类),则 loss_sample = ln(y_pred)
并且如果 y_true
为 0 ,然后是 loss_sample = ln(1-y_pred)
。这是有道理的,因为如果 y_true
为 1,您希望损失尽可能小,因此您希望 y_pred
为 1。如果 y_true
为 0,如果 1-y_pred
接近 1,你的损失会减少,所以如果 y_pred 为 0。
至于准确度,如果所有样本属于正确类别的概率高于 0.5 阈值,则准确度等于 1。
这意味着如果您有一个包含 3 个样本和目标的训练集 y1 = 1
、y2 = 0
、y3 = 1
和您预测 y1_hat = 0.6
、y2_hat = 0.2
、y3_hat = 0.9
。那么你的准确度将是 100%,但你的损失将是 loss = ln(0.6) + ln(1-0.2) + ln(0.9)
,它不是零。
总结:您预测属于某个类别的概率,损失计算正确的置信度,而准确性只是根据预测做出决定,而不考虑置信度。
您可以获得完美的准确度分数,因为您的网络做出了正确的决定,但是您的损失是积极的,因为您的网络对结果并不完全有信心。
是不是更清楚了?
关于python - 即使 keras 中的精度为 1.00,categorical_crossentropy 也会返回较小的损失值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43025416/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!