- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
所以我在 tensorflow (1.2) (python 3) 中遇到了这个错误:
WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.
Traceback (most recent call last):
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 267, in __init__
fetch, allow_tensor=True, allow_operation=True))
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2584, in as_graph_element
return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 2673, in _as_graph_element_locked
% (type(obj).__name__, types_str))
TypeError: Can not convert a function into a Tensor or Operation.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/theshoutingparrot/Desktop/Programming/Python/MachineLearningPY/Tensorflow/NumberClassifier.py", line 54, in <module>
summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 984, in _run
self._graph, fetches, feed_dict_string, feed_handles=feed_handles)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 410, in __init__
self._fetch_mapper = _FetchMapper.for_fetch(fetches)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 238, in for_fetch
return _ElementFetchMapper(fetches, contraction_fn)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 271, in __init__
% (fetch, type(fetch), str(e)))
TypeError: Fetch argument <function merge_all at 0x7f7d0f3d8620> has invalid type <class 'function'>, must be a string or Tensor. (Can not convert a function into a Tensor or Operation.)
代码如下:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
learning_rate = 0.01
training_iteration = 30
batch_size = 100
display_step = 2
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float", [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
with tf.name_scope("Wx_b") as scope:
model = tf.nn.softmax(tf.matmul(x, W) + b)
w_h = tf.summary.histogram("weights", W)
b_h = tf.summary.histogram("biases", b)
with tf.name_scope("cost_function") as scope:
cost_function = -tf.reduce_sum(y*tf.log(model))
tf.summary.scalar("cost_function", cost_function)
with tf.name_scope("train") as scope:
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)
init = tf.global_variables_initializer() #tf.initialize_all_variables()
merged_summary_op = tf.summary.merge_all
#Launch the graph
with tf.Session() as sess:
sess.run(init)
summary_writer = tf.summary.FileWriter('/home/theshoutingparrot/work/logs', graph_def=sess.graph_def)
for iteration in range(training_iteration):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
avg_cost += sess.run(cost_function, feed_dict={x: batch_xs, y: batch_ys})/total_batch
summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
summary_writer.add_summary(summary_str, iteration*total_batch + i)
if iteration % display_step == 0:
print("Iteration", '%04d' % (iteration + 1), "cost=", "{:.9f}".format(avg_cost))
print("Tuning completed!")
predictions = tf.equal(tf.argmax(model,1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(predictions, "float"))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
我是 tensorflow 的新手。我从这个视频(教程)中“得到”了这个代码 https://www.youtube.com/watch?v=2FmcHiLCwTU&list=PL2-dafEMk2A7EEME489DsI468AB0wQsMV
他(教程中的人 (Siraj Raval))正在使用旧版本的 tensorflow,所以这就是为什么有些代码像这样不同(示例):
w_h = tf.histogram_summary("weights", W) => w_h = tf.summary.histogram("weights", W)
更多信息:
我试图用 python (2.7) 运行相同的代码(当然我已经下载了适用于 Python 2.7 的 tensorflow)但是它给了我同样的错误。
任何帮助都会很好,提前致谢。
最佳答案
将 merged_summary_op = tf.summary.merge_all
替换为 merged_summary_op = tf.summary.merge_all()
这实际上是错误消息告诉您的内容:TypeError: Can not convert a function into a Tensor or Operation
-> tf.summary.merge_all
is a function ,不是张量或操作,你不能用 sess.run()
运行它,与 tf.summary.merge_all()
关于python - 无法将函数转换为张量或运算。 tensorflow 错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44651078/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!