- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想合并两个数据框。让我们考虑以下两个 df:
df1:
id_A, ts_A, course, weight
id1, 2017-04-27 01:35:30, cotton, 3.5
id1, 2017-04-27 01:36:05, cotton, 3.5
id1, 2017-04-27 01:36:55, cotton, 3.5
id1, 2017-04-27 01:37:20, cotton, 3.5
id2, 2017-04-27 02:35:35, cotton blue, 5.0
id2, 2017-04-27 02:36:00, cotton blue, 5.0
id2, 2017-04-27 02:36:35, cotton blue, 5.0
id2, 2017-04-27 02:37:20, cotton blue, 5.0
df2:
id_B, ts_B, value
id1, 2017-03-27 01:25:40, 100
id1, 2017-03-27 01:25:50, 200
id1, 2017-03-27 01:25:50, 230
id1, 2017-04-27 01:35:40, 240
id1, 2017-04-27 01:35:50, 200
id1, 2017-04-27 01:36:00, 350
id1, 2017-04-27 01:36:10, 400
id1, 2017-04-27 01:36:20, 500
id1, 2017-04-27 01:36:30, 600
id1, 2017-04-27 01:36:40, 700
id1, 2017-04-27 01:36:50, 800
id1, 2017-04-27 01:37:00, 900
id1, 2017-04-27 01:37:10, 1000
id2, 2017-04-27 02:35:40, 1000
id2, 2017-04-27 02:35:50, 2000
id2, 2017-04-27 02:36:00, 4500
id2, 2017-04-27 02:36:10, 3000
id2, 2017-04-27 02:36:20, 6000
id2, 2017-04-27 02:36:30, 5000
id2, 2017-04-27 02:36:40, 5022
id2, 2017-04-27 02:36:50, 5040
id2, 2017-04-27 02:37:00, 3200
id2, 2017-04-27 02:37:10, 9000
df1 应与 df2 合并,满足以下条件:给定时间间隔作为 df1 中两个连续行之间的差异,我想将它与 df2 中该时间间隔内所有行的平均值合并。例如,
id_A, ts_A, course, weight
id1, 2017-04-27 01:35:30, cotton, 3.5
应该合并
id_B, ts_B, value
id1, 2017-04-27 01:35:40, 240
id1, 2017-04-27 01:35:50, 200
id1, 2017-04-27 01:36:00, 350
并获得
id_A, ts_A, course, weight avgValue
id1, 2017-04-27 01:35:30, cotton, 3.5 263.3
我试图通过使用 merge_asof
从另一个角度看问题 - 这会将 df2 的缺失行包括到 df1 中 - 但我没有得到正确的结果:
pd.merge_asof(df2_sorted, df1, left_on='ts_B', right_on='ts_A', left_by='id_B', right_by='id_A', direction='backward')
最佳答案
我想你需要merge_asof
, 但计数器使用 reset_index
df1
中每行的唯一值:
df1 = df1.reset_index(drop=True)
print (df1.index)
RangeIndex(start=0, stop=8, step=1)
df = pd.merge_asof(df2_sorted,
df1.reset_index(),
left_on='ts_B',
right_on='ts_A',
left_by='id_B',
right_by='id_A')
然后按输出列分组(不要忘记 index
列)并汇总 mean
:
df = df.groupby(['id_A','ts_A', 'course', 'weight', 'index'], as_index=False)['value']
.mean()
.drop('index', axis=1)
print (df)
id_A ts_A course weight value
0 id1 2017-04-27 01:35:30 cotton 3.5 263.333333
1 id1 2017-04-27 01:36:05 cotton 3.5 600.000000
2 id1 2017-04-27 01:36:55 cotton 3.5 950.000000
3 id2 2017-04-27 02:35:35 cotton blue 5.0 1500.000000
4 id2 2017-04-27 02:36:00 cotton blue 5.0 4625.000000
5 id2 2017-04-27 02:36:35 cotton blue 5.0 5565.500000
关于python - 合并两个具有复杂条件的 Pandas 数据框,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45236581/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!