- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在 R 中有以下 lm
函数:
in_data <- c(0.5, 0.6, 0.7)
minutes <- c(30, 60, 90)
foobar <- lm(log(in_data) ~ 0 + hours)
问题
~
运算符用于分隔左和模型公式的右侧。所以在这种情况下,是否转换为 log(in_data) 取决于 0 和 hours
???我完全迷失在这里,尤其是向量的对数如何依赖于 0 和另一个向量.
import statsmodels.formula.api as sm
import numpy as np
result = sm.ols(formula="np.log(in_data) ~ 0 + minutes", data=model_data).fit()
但这引发了一个错误:
patsy.PatsyError: Number of rows mismatch between data argument and np.log(in_data) (1 versus 4)
np.log(in_data) ~ 0 + minutes
^^^^^^^^^^^^^^^^^
最佳答案
多元线性回归方程的形式为 y = b0 + b1x1 + b2x2 + ... +bkxk
其中 b0
是截距或常数。您可以通过在 R 中使用 0 +
从模型中排除这个常量。另一种方法是使用 - 1
,它在 R 和 patsy 中都有效。因此,您需要将结果更改为:
result = sm.ols(formula="np.log(in_data) ~ minutes - 1", data=model_data).fit()
关于python - Pandas 中 R 的 lm 函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46083644/
我对 lm 的一些令人不安的行为感兴趣函数和相关的predict.lm R 中的函数。splines基础包提供函数bs生成 b 样条展开,然后可用于使用 lm 拟合样条模型,一个通用的线性模型拟合函数
我使用 minpack.lm 包中的 nls.lm 来拟合许多非线性模型。 由于初始参数估计时的奇异梯度矩阵,它经常在 20 次迭代后失败。 问题是当我在失败之前查看迭代(trace = T)时,我可
我有一个稍微进入饱和状态的外部校准曲线。所以我拟合了一个二阶多项式和一个测量样本的数据框,我想知道其中的浓度。 df_calibration=structure(list(dilution = c(0
我试图弄清楚默认 r plot 的残差与拟合图中使用了哪种平滑线对于 lm对象,所以我通过输入 ?plot.lm 查看了帮助页面,因为据我了解 .是如何定义不同对象类型的这些默认行为的。 正如预期的那
我正在尝试使用 R 创建一个线性模型并使用它来预测一些值。主题是棒球数据。如果我这样做: obp <- lm(offense$R ~ offense$OBP) predict(obp, newdata
我有两个变量,我想找到它们之间的相关性。问题是,根据我使用的方法,我似乎得到了不同的结果。 我知道的一种方法是使用 scale() 函数中的自变量和因变量运行 lm() 函数。 所以下面的变量看起来像
我在使用 C Makefile 时遇到了一些问题。 Makefile 的内容如下: PROJECT = 3D-ELM MPICC = mpicc CLAGS = -g -O3 LIBS = -lm S
我使用 caret R 包作为一个非常方便的建模包装器。虽然这是一个奇怪的用法,但在使用模型类型 =“lm”和“无”的交叉验证时,我在从模型中提取结果时遇到了一些麻烦。参见下面的示例: library
我想使用 lm 在 R 中拟合线性模型获得总模型拟合的系数估计值和 p 值 + p 值(类似方差分析),因此基本上来自 summary.lm 的输出. 问题是我想使用我自己的模型矩阵,而不是在调用 l
我建了一个 lm不使用 data= 的模型范围: m1 <- lm( mdldvlp.trim$y ~ gc.pc$scores[,1] + gc.pc$scores[,2] + gc.pc$sco
我是 R 的新手,我只是在学习 apply功能及其工作方式。我只想从 lm 中提取系数适合几年内产品颜色和品牌的变量 x。 我知道我可以创建一个 for 循环并按型号年份对数据进行子集化并拟合它,但我
如何计算 df 中存储在列中的多个变量的行向 lm()/系数? 我有这种数据(只是例子): set.seed(1) foo trialNumber Nr1 Nr2
我对在 ggplot2 中自动绘制模型很感兴趣。基于 discussion在 ggplot2 问题跟踪器上,我相信像下面这样的包装器应该可以工作。 geom_predict Warning: Com
我正在对多个属性(包括两个分类属性B和F)进行线性回归,但是我没有获得每个系数水平的系数值。 B具有9个级别,而F具有6个级别。当我最初运行模型(带有截距)时,我得到了8个B系数和5个F系数,我将其理
我一直试图弄清楚 subset R 中的参数 lm()功能有效。特别是以下代码对我来说似乎很可疑: data(mtcars) summary(lm(mpg ~ wt, data=mtcars))
我有以下数据框 > df df2 Economy ConditionA ConditionB ConditionC ConditionD 1 FRANCE 9
我正在使用来自包鼠标的男孩数据集的数据。当我对其中一个因子变量 (phb) 运行回归时,输出会显示这些因子,但给它们的名称与数据中的名称不同。我想知道为什么会这样。有没有办法纠正它? library(
通常,我和你(假设你不是机器人)很容易识别预测器是分类的还是定量的。例如,性别显然是分类的。您的最后一票可以分类。 基本上,我们可以轻松识别分类预测变量。但是当我们在 R 中输入一些数据时会发生什么,
我们从中得到了一个 lm 对象并想提取标准错误 lm_aaa<- lm(aaa~x+y+z) 我知道函数摘要、名称和系数。 但是,摘要似乎是手动访问标准错误的唯一方法。 你知道我怎么能输出se吗? 谢
我正在拟合一个模型来分解数据并进行预测。如果newdata中的predict.lm()包含模型未知的单个因子级别,则所有predict.lm()都会失败并返回错误。 有没有一种好方法可以让predic
我是一名优秀的程序员,十分优秀!