小 pig 回避我之前的问题 python pandas: assign control vs. treatment groupings randomly based on %
感谢@maxU,我知道如何将随机控制/治疗分组分配给 2 个组;但是如果我有 3 个或更多组呢?
例如:
df.head()
customer_id | Group | many other columns
ABC 1
CDE 3
BHF 2
NID 1
WKL 3
SDI 2
JSK 1
OSM 3
MPA 2
MAD 1
pd.pivot_table(df,index=['Group'],values=["customer_id"],aggfunc=lambda x: len(x.unique()))
Group 1 : 270
Group 2 : 180
Group 3 : 330
当我只有两组时,我有一个很好的答案:
df['Flag'] = df.groupby('Group')['customer_id']\
.transform(lambda x: np.random.choice(['Control','Test'], len(x),
p=[.5,.5] if x.name==1 else [.4,.6]))
但是如果我想这样拆分呢:
- 第 1 组:50% 控制和 50% 测试
- 第 2 组:40% 控制和 60% 测试
- 第 3 组:20% 控制和 80% 测试
@MaxU 的回答很好,但不幸的是分割不准确
d = {1:[.5,.5], 2:[.4,.6], 3:[.2,.8]}
df['Flag'] = df.groupby('Group')['customer_id'] \
.transform(lambda x: np.random.choice(['Control','Test'], len(x), p=d[x.name]))
当我测试它时,我没有得到精确的拆分。
pd.pivot_table(df,index=['Group'],values=["customer_id"],columns=['Flag'], aggfunc=lambda x: len(x.unique()))
Control Treatment
Group 1: 138 132
Group 2: 78 102
Group 3: 79 251
第 1 组应该是 135/135。
In [13]: df
Out[13]:
customer_id Group
0 ABC 1
1 CDE 3
2 BHF 2
3 NID 1
4 WKL 3
5 SDI 2
6 JSK 1
7 OSM 3
8 MPA 2
9 MAD 1
In [14]: d = {1:[.5,.5], 2:[.4,.6], 3:[.2,.8]}
In [15]: df['Flag'] = \
...: df.groupby('Group')['customer_id'] \
...: .transform(lambda x: np.random.choice(['Control','Test'], len(x), p=d[x.name]))
...:
In [16]: df
Out[16]:
customer_id Group Flag
0 ABC 1 Control
1 CDE 3 Test
2 BHF 2 Test
3 NID 1 Control
4 WKL 3 Control
5 SDI 2 Test
6 JSK 1 Test
7 OSM 3 Test
8 MPA 2 Control
9 MAD 1 Test
我是一名优秀的程序员,十分优秀!