- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试实现批量归一化操作的一些微调版本;其中我需要明确保留移动平均值,如均值和方差。为了做到这一点,我正在对 Tensorflow 中的分配和控制依赖机制进行一些实验,但我遇到了一个神秘的问题。我有以下玩具代码;我在其中尝试测试 tf.control_dependencies
是否按预期工作:
dataset = MnistDataSet(validation_sample_count=10000,
load_validation_from="validation_indices")
samples, labels, indices_list, one_hot_labels =
dataset.get_next_batch(batch_size=GlobalConstants.BATCH_SIZE)
samples = np.expand_dims(samples, axis=3)
flat_data = tf.contrib.layers.flatten(GlobalConstants.TRAIN_DATA_TENSOR)
mean = tf.Variable(name="mean", initial_value=tf.constant(100.0, shape=[784], dtype=tf.float32),
trainable=False, dtype=tf.float32)
a = tf.Variable(name="a", initial_value=5.0, trainable=False)
b = tf.Variable(name="b", initial_value=4.0, trainable=False)
c = tf.Variable(name="c", initial_value=0.0, trainable=False)
batch_mean, batch_var = tf.nn.moments(flat_data, [0])
b_op = tf.assign(b, a)
mean_op = tf.assign(mean, batch_mean)
with tf.control_dependencies([b_op, mean_op]):
c = a + b
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
results = sess.run([c, mean], feed_dict={GlobalConstants.TRAIN_DATA_TENSOR: samples})
我只是加载一个数据批处理,每个条目都有 784 个维度,计算它的矩并尝试将 batch_mean
存储到变量 mean
中。我也简单地将变量 a
的值存储到 b
中。
在最后一行中,当我针对 c
和 mean
的值运行图形时,我看到 c
为 10,即期望值。但是 mean
仍然是一个 100 的向量,并且不包含批处理均值。就像 mean_op = tf.assign(mean, batch_mean)
还没有被执行。
这可能是什么原因?据我所知,tf.control_dependencies
调用中的所有操作必须在以下上下文中的任何操作之前执行;我这里明确调用了c
,在上下文中。我错过了什么吗?
最佳答案
这是一个 known "feature" tf.Session.run()
。 c
和 mean
操作是独立的,因此 mean
可以在 c
之前评估(这将更新 意思是
).
这是此效果的简化版本:
a = tf.Variable(name="a", initial_value=1.0, trainable=False)
b = tf.Variable(name="b", initial_value=0.0, trainable=False)
dependent_op = tf.assign(b, a * 3)
with tf.control_dependencies([dependent_op]):
c = a + 1
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run([c, b]))
print(sess.run([b]))
b
的第二次评估保证返回 [3.0]
。但是第一个 run
可能会返回 [2.0 3.0]
或 [2.0 0.0]
。
关于python - Tensorflow:tf.assign 不分配任何东西,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47203019/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!