gpt4 book ai didi

python - Tensorflow神经网络预测总是一样的

转载 作者:太空宇宙 更新时间:2023-11-04 00:25:30 25 4
gpt4 key购买 nike

我有一个深度 CNN,可以为 3d 图像中的每个像素预测“0”和“2”之间的标签。我在每个像素都标记为“1”的图像上训练了模型。因此,在测试模型时,我认为每个预测都应该是“1”。相反,该模型仅预测“0”。

这里是整个模型的存储库:https://github.com/dhasl002/Research-DeepLearning .

由于代码将近 300 行,下面我将只包含相关代码。

 x = tf.placeholder(tf.float32, shape=[None, 7168])
y_ = tf.placeholder(tf.float32, shape=[None, 7168, 3])

W_final = weight_variable([7168,7168,3])
b_final = bias_variable([7168,3])

#"final" is the result of the many convolutions
final_conv = tf.tensordot(final, W_final, axes=[[1], [1]]) + b_final

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=final_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(final_conv, 2), tf.argmax(y_, 2))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

#a is a threshold associate with each pixel, b is the label of each pixel
a = np.zeros((1,7168),dtype = float)
b = np.zeros((1,7168, 3), dtype = float)

#this is a little simplified for clarity of reader
#TRAINING
for line in inputFile:
thresh, label = line.strip().split(",")
a[0][it] = thresh
b[0][it][label] = 1
train_step.run(feed_dict={x: a, y_: b, keep_prob: .5})

#TESTING
for line in inputFile:
thresh, label = line.strip().split(",")
a[0][it] = thresh
b[0][it][label] = 1
temp = sess.run(tf.argmax(final_conv,2), feed_dict={x: a})

我相信最后一行的“temp”应该包含正确的预测(7168 个标签 - 每个像素一个)。 为什么“temp”实际上是在仅带有“1”标签的图像上训练时总是产生全“0”标签?

最佳答案

您提供的数据不仅包含 1 标签,偶尔也包含 2(您可以浏览文本文件或简单地打印 label 值来查看)。这不仅与您训练常量函数的想法相矛盾,而且还破坏了单热编码,从而破坏了整个算法。

这是您脚本的摘录:

a = np.zeros((1,N*M*P),dtype = float)
b = np.zeros((1,N*M*P, 3), dtype = float)
[...]

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
parent = "..."
with open(parent) as inf1:
next(inf1)
for line5 in inf1:
line1, maxNum = line5.strip().split(",")
path = "..."
num = 0
while num < maxNum:
it = 0
with open(path + str(num) + ".txt") as inf:
next(inf)
num = num + 1
for line in inf:
[...]
a[0][it] = thresh
b[0][it][label] = 1
it = it + 1

查看您的代码,b 应该是一个单热向量。但请注意,它仅在定义变量时才归零。之后,它被分配给不同索引处的 1while 循环的后续迭代更新相同的 b 数组,因此它最终在批处理的后面的行中包含多个 1cross-entropy loss期望有效的概率分布,因此对于您的数据,其输出变得完全没有意义:

Each row labels[i] must be a valid probability distribution.

总结:您处理数据的方式过于复杂,因此容易出错。尝试更简单地组织您的输入文件,以便可以将其读入 numpy 数组(或 pandas 数据帧)并提供给 session 。

关于python - Tensorflow神经网络预测总是一样的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47638633/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com