gpt4 book ai didi

python - 使用 Keras 模型进行预测时出错

转载 作者:太空宇宙 更新时间:2023-11-04 00:22:02 24 4
gpt4 key购买 nike

我正在尝试使用预训练的 Keras 模型对样本进行预测,但出现错误。我详细介绍了模型训练脚本的各个部分,以显示数据准备、矩阵形状和模型规范;

矩阵形状和数据准备:

from __future__ import print_function
#import numpy as np
np.random.seed(1337) # for reproducibility

from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K

batchsize = 128
nb_classes = 3
nb_epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size
kernel_size = (3, 3)

# the data, shuffled and split between train and test sets
#(X_train, y_train), (X_test, y_test) = mnist.load_data()

if K.image_dim_ordering() == 'th':
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

模型规范:

model = Sequential()

model.add(Convolution2D(nb_filters, [kernel_size[0], kernel_size[1]],
padding='valid',
input_shape=input_shape,
name='conv2d_1'))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, [kernel_size[0], kernel_size[1]], name='conv2d_2'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size, name='maxpool2d'))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128, name='dense_1'))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes, name='dense_2'))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])

在一个完全独立的程序中,预训练模型被重新加载,输入样本矩阵被 reshape 以匹配模型的预期,并将相同的归一化应用于数据。像这样;

预测方法:

from keras import backend as K
from keras.models import load_model

img_rows, img_cols = 28, 28

#Load the pre-trained classifier model
retrieved_model = load_model('classifier_cnn_saved_model_0.05_30min.hdf5')

#Function to callback
def get_prediction(sample):
print('Received: ' + str(sample.shape))
if K.image_dim_ordering() == 'th':
sample = sample.reshape(sample.shape[0], 1, img_rows, img_cols)
else:
sample = sample.reshape(sample.shape[0], img_rows, img_cols, 1)

print('Reshaped for backend: ' + K.image_dim_ordering() + ' ' + str(sample.shape))
sample = sample.astype('float32')
sample /= 255 #normalize the sample data
prediction = retrieved_model.predict(sample)
print('pyAgent; ' + str(sample.shape) + ' prediction: ' + str(prediction))

调用 get_prediction 时给出此输出;

Received: (1, 784) <====== Yep, as expected.
Reshaped for backend: tf (1, 28, 28, 1) <====== What the model expects, I think. Based on how it was specified at training time.

但在尝试预测时出现此错误;

Exception: ValueError: Tensor Tensor("activation_4/Softmax:0", shape=(?, 3), dtype=float32) is not an element of this graph. 

我被难住了。任何人都可以指出这里有什么问题以及如何纠正它吗?非常感谢。

注意所有训练和预测都发生在同一台 Windows 10 机器上,使用 Python 3 以及 Keras 2.1.3 和 Tensorflow 1.5.0

最佳答案

考虑到这个github issue给出了答案。在这种情况下,get_prediction() 将由与加载模型的线程不同的线程调用。进行这些更改清除了错误:

import tensorflow as tf #<======= add this
from keras import backend as K
from keras.models import load_model

img_rows, img_cols = 28, 28

#Load the pre-trained classifier model
retrieved_model = load_model('classifier_cnn_saved_model_0.05_30min.hdf5')
#https://www.tensorflow.org/api_docs/python/tf/Graph
graph = tf.get_default_graph() #<======= do this right after constructing or loading the model

#Function to callback
def get_prediction(sample):
print('Received: ' + str(sample.shape))
if K.image_dim_ordering() == 'th':
sample = sample.reshape(sample.shape[0], 1, img_rows, img_cols)
else:
sample = sample.reshape(sample.shape[0], img_rows, img_cols, 1)

print('Reshaped for backend: ' + K.image_dim_ordering() + ' ' + str(sample.shape))
sample = sample.astype('float32')
sample /= 255 #normalize the sample data
with graph.as_default(): #<======= with this, call predict
prediction = retrieved_model.predict_classes(sample)
print('pyAgent; ' + str(sample.shape) + ' prediction: ' + str(prediction))

关于python - 使用 Keras 模型进行预测时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48785984/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com