- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
总结:根据documentation , Keras model.fit()
应该接受 tf.dataset 作为输入(我使用的是 TF 版本 1.12.0)。如果我手动执行训练步骤但可以训练我的模型,但在同一模型上使用 model.fit()
,我会收到无法解决的错误。
这是我所做工作的草图:我的数据集太大而无法放入内存,它由许多文件组成,每个文件具有不同行数(100 个特征,标签)。我想使用 tf.data
构建我的数据管道:
def data_loader(filename):
'''load a single data file with many rows'''
features, labels = load_hdf5(filename)
...
return features, labels
def make_dataset(filenames, batch_size):
'''read files one by one, pick individual rows, batch them and repeat'''
dataset = tf.data.Dataset.from_tensor_slices(filenames)
dataset = dataset.map( # Problem here! See edit for solution
lambda filename: tuple(tf.py_func(data_loader, [filename], [float32, tf.float32])))
dataset = dataset.flat_map(
lambda features, labels: tf.data.Dataset.from_tensor_slices((features, labels)))
dataset = dataset.batch(batch_size)
dataset = dataset.repeat()
dataset = dataset.prefetch(1000)
return dataset
_BATCH_SIZE = 128
training_set = make_dataset(training_files, batch_size=_BATCH_SIZE)
我想尝试一个非常基本的逻辑回归模型:
inputs = tf.keras.layers.Input(shape=(100,))
outputs = tf.keras.layers.Dense(1, activation='softmax')(inputs)
model = tf.keras.Model(inputs, outputs)
如果我手动训练它一切正常,例如:
labels = tf.placeholder(tf.float32)
loss = tf.reduce_mean(tf.keras.backend.categorical_crossentropy(labels, outputs))
train_step = tf.train.GradientDescentOptimizer(.05).minimize(loss)
iterator = training_set.make_one_shot_iterator()
next_element = iterator.get_next()
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
for i in range(training_size // _BATCH_SIZE):
x, y = sess.run(next_element)
train_step.run(feed_dict={inputs: x, labels: y})
但是,如果我尝试像这样使用 model.fit
:
model.compile('adam', 'categorical_crossentropy', metrics=['acc'])
model.fit(training_set.make_one_shot_iterator(),
steps_per_epoch=training_size // _BATCH_SIZE,
epochs=1,
verbose=1)
我在 keras 的 _standardize_user_data
函数中收到一条错误消息 ValueError: Cannot take the length of Shape with unknown rank.
。
我尝试了很多方法,但无法解决问题。有什么想法吗?
编辑:根据@kvish 的回答,解决方案是将映射从 lambda 更改为指定正确张量维度的函数,例如:
def data_loader(filename):
def loader_impl(filename):
features, labels, _ = load_hdf5(filename)
...
return features, labels
features, labels = tf.py_func(loader_impl, [filename], [tf.float32, tf.float32])
features.set_shape((None, 100))
labels.set_shape((None, 1))
return features, labels
现在,所有需要做的就是从 map
调用这个函数:
dataset = dataset.map(data_loader)
最佳答案
可能 tf.py_func 产生了 Keras 无法推断的未知形状。我们可以使用 set_shape(your_shape) 方法设置它返回的张量的形状,这将有助于 Keras 推断结果的形状。
关于python - 带有 tf.dataset 的 Keras model.fit() 在使用 tf.train 时失败但工作正常,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54055707/
如果我用 dataset.batch(n).prefetch(m), 将预提取m个批次或m个 sample ? 最佳答案 Dataset.prefetch(m) 转换预取其直接输入的m元素。在这种情况
根据 TensorFlow documentation 、tf.contrib.data.Dataset 类的 prefetch 和 map 方法,都有一个名为 buffer_size 的参数. 对于
我正在使用 Flink 0.10.1 的 DataSet API 编写应用程序。我可以在 Flink 中使用单个运算符获取多个收集器吗? 我想做的是如下所示: val lines = env.read
为了使用 Google Colabs TPU,我需要一个 tf.dataset.Dataset .那么如何在这样的数据集上使用数据增强? 更具体地说,到目前为止我的代码是: def get_datas
我有一个包含 2 个相关数据表(主数据表和详细信息)的数据集。我想将与我的过滤器匹配的数据(例如主数据列 A =“XXX”)复制到另一个数据集。 现在我发现这个过程需要很长时间(1k 条记录大约需要一
我正在使用 .pvd文件同时加载多个文件到 Paraviw。对于具有单个数据集的时间序列,该文件看起来像这样: 我想指定要与 a.*.vtu 一起加载的其他文件(
我听说 Google 主办(或将举办)一场网络分类竞赛,他们提供了一个大型(170k+ 文档)网站数据集,这些网站被分为多个类别(体育、计算机、科学等),我尝试环顾四周在他们的 2009 年到 201
谁能给我解释一下 DataSet.Copy() vs Dataset.Clone()也让我知道一些我们可以使用这些的场景 最佳答案 Clone 将创建一个新的空数据集,其架构(表和列)与旧数据集相同。
dataset = dataset.batch(50) dataset = dataset.prefetch(buffer_size=1) 是预取 1 个批次还是 1 个元素? 根据 tensorfl
在 Delphi 中,与 Dataset.Next 相比,使用 Dataset.Prior 是否会降低性能? 背景: 我有一个在数据集中搜索特定记录的例程。我从数据集中的最后一条记录开始,然后使用 D
我正在使用 Spark(2.0) 开发 Spark SQL,并使用 Java API 读取 CSV。 CSV 文件中有一个双引号、逗号分隔的列。例如:“Express Air,Delivery Tru
为什么要使用DataSet.BeginInit 和DataSet.EndInit? 我已经经历了official msdn documentation ,它说 Begins the initializ
我正在尝试向新的数据集 X 添加一个位于不同数据集 Y 中的数据表。如果我直接添加它,我会得到以下错误: DataTable already belongs to another DataSet. 我
我有一个表示为形状为 (num_features, num_examples) 的 NumPy 矩阵的数据集,我希望将其转换为 TensorFlow 类型 tf.Dataset。 我正在努力理解这两种
这是 question 的转发在 ai.stackexchange 中询问。由于该论坛没有太多吸引力,我想我可以在这里尝试一下机会。 我有一个特定对象的不同尺寸的图像数据集。该物体的一些图像也处于不同
我有两个数据集: main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100))) backgroud_ds = tf.dat
拥有Dataset单列 json 字符串: +--------------------+ | value| +--------------------+ |{"Contex
我正在尝试解决 Azure 数据工厂中的以下场景: 我在 Azure Blob 存储中有大量文件夹。每个文件夹包含不同数量的 parquet 格式的文件。文件夹名称包含生成该文件夹中包含的数据的日期,
我正在尝试解决 Azure 数据工厂中的以下场景: 我在 Azure Blob 存储中有大量文件夹。每个文件夹包含不同数量的 parquet 格式的文件。文件夹名称包含生成该文件夹中包含的数据的日期,
我有一个顺序数据集,我可以从中创建窗口来训练 RNN。在某些情况下,我想扔掉某些 window 。但是,当我使用 dataset.window 和 dataset.filter 时,管道内部会出现一些
我是一名优秀的程序员,十分优秀!