- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想可视化 CNN 中给定特征图所学习的模式(在本例中我使用的是 vgg16)。为此,我创建了一个随机图像,通过网络提供给所需的卷积层,选择特征图并找到与输入有关的梯度。这个想法是以最大化激活所需特征图的方式改变输入。使用tensorflow 2.0我有一个GradientTape跟随函数然后计算梯度,但是梯度返回None,为什么它无法计算梯度?</p>
import tensorflow as tf
import matplotlib.pyplot as plt
import time
import numpy as np
from tensorflow.keras.applications import vgg16
class maxFeatureMap():
def __init__(self, model):
self.model = model
self.optimizer = tf.keras.optimizers.Adam()
def getNumLayers(self, layer_name):
for layer in self.model.layers:
if layer.name == layer_name:
weights = layer.get_weights()
num = weights[1].shape[0]
return ("There are {} feature maps in {}".format(num, layer_name))
def getGradient(self, layer, feature_map):
pic = vgg16.preprocess_input(np.random.uniform(size=(1,96,96,3))) ## Creates values between 0 and 1
pic = tf.convert_to_tensor(pic)
model = tf.keras.Model(inputs=self.model.inputs,
outputs=self.model.layers[layer].output)
with tf.GradientTape() as tape:
## predicts the output of the model and only chooses the feature_map indicated
predictions = model.predict(pic, steps=1)[0][:,:,feature_map]
loss = tf.reduce_mean(predictions)
print(loss)
gradients = tape.gradient(loss, pic[0])
print(gradients)
self.optimizer.apply_gradients(zip(gradients, pic))
model = vgg16.VGG16(weights='imagenet', include_top=False)
x = maxFeatureMap(model)
x.getGradient(1, 24)
最佳答案
这是 GradientTape
的一个常见陷阱;磁带仅跟踪设置为“监视”的张量,默认情况下磁带将仅监视可训练变量(即使用 trainable=True
创建的 tf.Variable
对象)。要观看 pic
张量,您应该将 tape.watch(pic)
添加为磁带上下文中的第一行。
另外,我不确定索引 (pic[0]
) 是否有效,所以您可能想删除它——因为 pic
只有一个进入第一个维度应该无关紧要。
此外,您不能使用 model.predict
,因为这会返回一个 numpy 数组,它基本上会“破坏”计算图链,因此梯度不会被反向传播。您应该简单地将模型用作可调用对象,即 predictions = model(pic)
。
关于python - Tensorflow 2.0 不计算梯度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56916313/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!