- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想为每个参数的最低级别设置特定的学习率。 IE。内核权重和偏差中的每个值都应该有自己的学习率。
我可以像这样指定过滤器方面的学习率:
optim = torch.optim.SGD([{'params': model.conv1.weight, 'lr': 0.1},], lr=0.01)
但是当我想降低一个级别时,就像这样:
optim = torch.optim.SGD([{'params': model.conv1.weight[0, 0, 0, 0], 'lr': 0.1},], lr=0.01)
我收到一个错误:ValueError: can't optimize a non-leaf Tensor
我还尝试指定一个与过滤器具有相同形状的学习率,例如 'lr': torch.ones_like(model.conv1.weight)
,但这也没有成功。
有没有办法使用 torch.optim
来做到这一点? ?
最佳答案
我可能已经找到了解决方案。由于只能输入 Conv Layer 的全部权重和偏差,因此我们需要插入一个与权重/偏差张量形状相同的学习率。
这是一个使用 torch.optim.Adam
的例子:
torch.optim.CustomAdam([{'params': param, 'lr': torch.ones_like(param, requires_grad=False) * lr}
for name, param in model.named_parameters()])
然后我们必须在优化器本身中更改一行。为此,我创建了一个自定义优化器:
class CustomAdam(torch.optim.Adam):
def step(self, closure=None):
...
# change the last line: p.data.addcdiv_(-step_size, exp_avg, denom) to
p.data.add_((-step_size * (exp_avg / denom)))
关于python - 我可以在 PyTorch 中指定内核权重特定的学习率吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59018085/
我使用 QBFC v13 和 Delphi XE6。 目标是从我的应用程序创建 Estimate 并将其参数设置到 QuickBooks 中。 我从 QBFC13 导入类型库并将其添加到我的项目中。
我有一个数据库,其中有很多格式不正确的地址。在这个地址中,我只有一个街道地址或带有城市名称的街道。在我的应用程序中,用户选择一些类别,然后我想在 map 上显示例如 50,100,300 等地址。(不
在大多数软件项目中,缺陷源自需求、设计、编码和缺陷更正。根据我的经验,大多数缺陷都源于编码阶段。 我有兴趣了解软件开发人员使用哪些实用方法来降低缺陷注入(inject)率。 我已经看到以下方法的使用取
我正在使用实时 API 中的标签订阅构建一个应用程序,并且有一个与容量规划相关的问题。我们可能有大量用户同时发布到订阅的主题标签,因此问题是 API 实际发布到我们的订阅处理端点的频率是多少?例如,如
尝试使用 NULLIF 或 IFNULL 函数,但仍收到被零除的消息。 SELECT client_id ,COUNT(distinct CASE WHEN status = 'failed' THE
我目前正在开发一个使用 Django-rest-framework 制作的 API。我必须根据每个用户组设置限制率。 我们目前使用默认配置的 memcached 作为缓存后端,即按站点缓存。 在使用
我认为有时在神经网络(特别是一般对抗网络)训练期间改变丢失率可能是一个好主意,从高丢失率开始,然后线性地将丢失率降低到零。您认为这有意义吗?如果是的话,是否有可能在 tensorflow 中实现这一点
我有一个 Windows Server 2008,Plesk 运行着两个网站。有时服务器运行缓慢,并且有一个 named.exe 进程使 CPU 峰值达到 100%。它持续很短的时间,过一会儿它又来了
我正在使用 scikit-learn 随机森林分类器,我想通过将成功投票所需的树数量从大于 50% 增加到 75% 来降低 FP 率,在阅读文档后我不这样做确定如何做到这一点。有没有人有什么建议。 (
当我连续按下按键事件(字母 k)时,为什么以下按键事件不会减慢 3000 密耳?如果我按住手指,计数会迅速增加,因为 mcount 上没有 setTimeout。这是为什么?每次计数之间应该有延迟,但
我是一名优秀的程序员,十分优秀!