gpt4 book ai didi

python - 如何在随机点云上拟合点网格

转载 作者:太空宇宙 更新时间:2023-11-03 23:13:55 24 4
gpt4 key购买 nike

我有一个带点的二值图像,它是我使用 OpenCV 的 goodFeaturesToTrack 获得的,如 Image1 所示。

Image1 : Cloud of points

我想在其上放置一个 4*25 点的网格,例如 Image2 上显示的(并非所有点都在图像上可见,但它是一个常规的 4*25 点矩形)。

Image2 : Model grid of points

我的 4*25 点模型网格参数化为: 1 - 左上角的位置 2 - 矩形与地平线的倾斜度下面的代码显示了构建此类模型的函数。

这个问题看起来很接近棋盘角问题。

我想知道如何将我的模型点云拟合到输入图像并获得点云的位置和角度。我可以轻松测量两幅图像(输入图像和模型网格上的图像)之间的距离,但我想避免检查图像上的每个像素和角度以找到该距离的最小值。

def ModelGrid(pos, angle, shape):

# Initialization of output image of size shape
table = np.zeros(shape)

# Parameters
size_pan = [32, 20]# Pixels
nb_corners= [4, 25]
index = np.ndarray([nb_corners[0], nb_corners[1], 2],dtype=np.dtype('int16'))
angle = angle*np.pi/180

# Creation of the table
for i in range(nb_corners[0]):
for j in range(nb_corners[1]):
index[i,j,0] = pos[0] + j*int(size_pan[1]*np.sin(angle)) + i*int(size_pan[0]*np.cos(angle))
index[i,j,1] = pos[1] + j*int(size_pan[1]*np.cos(angle)) - i*int(size_pan[0]*np.sin(angle))

if 0 < index[i,j,0] < table.shape[0]:
if 0 < index[i,j,1] < table.shape[1]:
table[index[i,j,0], index[i,j,1]] = 1

return table

最佳答案

我找到的一个解决方案,效果相对较好,如下所示:

首先,我创建了所有正像素位置的索引,只是遍历图像。我将这些像素称为角。

然后我使用这个索引来计算平均倾斜角:对于每个角,我寻找在某些区域足够接近的其他角,以定义一个十字。我设法为每个像素找到直接位于其左侧、右侧、顶部和底部的像素。我用这个十字来计算一个倾角,然后用所有获得的倾角的中值作为我的模型点网格的角度。

一旦我有了这个角度,我就可以简单地使用这个角度和每个角的位置来构建一个表格。优化函数测量两个图像上重合像素的数量,并返回最佳位置。

这种方式适用于大多数示例,但返回的“最佳位置”必须是角之一,这并不意味着它对应于最佳位置......主要是如果网格的左上角在角云不见了。

关于python - 如何在随机点云上拟合点网格,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43809806/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com