gpt4 book ai didi

python - 如何使用 OpenCV Python 检测对象的边缘点?

转载 作者:太空宇宙 更新时间:2023-11-03 23:08:23 26 4
gpt4 key购买 nike

所以,我已经检测到一个物体的所有边,但问题是我找不到每条边的两个点,即起点和终点及其坐标。

实际上我正在尝试找到一个对象的测量值,但我被这个问题困住了。 The image is regarding the ROI of the image.

import cv2
import numpy as np
from matplotlib import pyplot as plt

#Read Image of the Object
img = cv2.imread("C:\\Users\\Desktop\\Project\\captured.jpg")
cv2.imshow('Original Image', img)
cv2.waitKey(0)



#Convert Image To GrayScale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('Gray', gray)
cv2.waitKey(0)


#Binary Thresholding
ret, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY_INV)
cv2.imshow('Binary Image', thresh)
cv2.waitKey(0)

#Crop Image
cropped = thresh[150:640, 150:500]
cv2.imshow('Cropped Image', cropped)
cv2.waitKey(0)

#Edge Detection
edges = cv2.Canny(cropped, 100, 200)
cv2.imshow('Edges', edges)
cv2.waitKey(0)

#find contours
ctrs, hier = cv2.findContours(cropped, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

#Sort Contours
sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0] + cv2.boundingRect(ctr)[1] * cropped.shape[1])


#ROI
for i, ctr in enumerate(sorted_ctrs):
# Get bounding box
x, y, w, h = cv2.boundingRect(ctr)

# Getting ROI
roi = cropped[y:y + h, x:x + w]
# show ROI
# cv2.imshow('segment no:'+str(i),roi)
cv2.rectangle(cropped , (x, y), (x + w, y + h), (150, 0, 255), 2)
cv2.imshow('marked areas', cropped)
cv2.waitKey(0)

Original Image

These are 5 points and the five edges that I need with coordinates so I can calculate the distance between them for the measurement.

Harris Corner Output.

最佳答案

尝试使用 Harris Corner Detection相反:

import cv2
import numpy as np

def find_centroids(dst):
ret, dst = cv2.threshold(dst, 0.01 * dst.max(), 255, 0)
dst = np.uint8(dst)

# find centroids
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)
# define the criteria to stop and refine the corners
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100,
0.001)
corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),
(-1,-1),criteria)
return corners

image = cv2.imread("corner.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)

dst = cv2.cornerHarris(gray, 2, 3, 0.04)

dst = cv2.dilate(dst, None)

# Threshold for an optimal value, it may vary depending on the image.
# image[dst > 0.01*dst.max()] = [0, 0, 255]

# Get coordinates
corners= find_centroids(dst)
# To draw the corners
for corner in corners:
image[int(corner[1]), int(corner[0])] = [0, 0, 255]
cv2.imshow('dst', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

结果:

Detected Corners

您可能需要微调 cornerHarris 的参数。

关于python - 如何使用 OpenCV Python 检测对象的边缘点?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54589566/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com