gpt4 book ai didi

带掩码的 Python OpenCV matchTemplate - 在所有位置找到匹配项

转载 作者:太空宇宙 更新时间:2023-11-03 23:06:45 38 4
gpt4 key购买 nike

问题:我从 matchTemplate 收到的结果表明我在每个位置都有匹配值 1.0

预期结果:我预计 results 中的一个位置比其他位置有更高的分数。

代码:

def template_match(filename=base_name,
img_folder=trn_imgs_path,
templates=['wet_install.png',
'wet_install_cleaned.png',
'wet_install_tag.png',
'wet_install_tag_cleaned.png'],
template_path=template_path,
threshold=0.8,
save_dir=save_dir):
'''
Perform template matching on an input image using a few templates.
It draws bounding boxes on a copy of the original image.

Args:
filename (str): name of the file with the .svg extension
img_folder (str): path to folder containing the images
templates (list): list of template filenames to match against
template_path (str): path to folder containing the templates
threshold (float): the threshold for a match from template matching
save_dir (str): path to folder to save results
'''
print('Working on file: {}.png'.format(filename))

# load the original BGR image
img_rgb = cv2.imread(img_folder + filename + '.png')[5143:5296, 15169:15368] # TODO(mtu): Don't keep these indices here!
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
img_gray = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)

# loop over each template
colors = [(0,0,255), (0,255,0), (255,255,0), (255,0,255)]
for itemp in range(len(templates)):
template_name = templates[itemp]
print('Using Template: {}'.format(template_name))

# load the template as grayscale and get its width and height
template = cv2.imread(template_path + '{}'.format(template_name), 0)
height, width = template.shape[:2]

template = cv2.adaptiveThreshold(template, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)
temp_mask = cv2.adaptiveThreshold(template, 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 115, 1)

# do template matching using grayscale image and find points above theshold
results = cv2.matchTemplate(image=img_gray, templ=template, method=cv2.TM_CCORR_NORMED, mask=temp_mask)
loc = np.where(results >= threshold)

# draw rectangles on points above threshold on RGB image
for pt in zip(*loc[::-1]):
cv2.rectangle(img_rgb, pt, (pt[0] + width, pt[1] + height), colors[itemp%len(colors)], 5)

# save the file with bounding boxes drawn on
filename = save_dir + '{}_found.png'.format(filename)
print('Saving bounding boxes to: {}'.format(filename))
cv2.imwrite(filename, img_rgb)

评论:

  • Debug output显示 img_graytemplatetemp_mask 的外观
  • img_gray 只是模板,顶部有 10 行额外的白色填充像素
  • templatetemp_mask 是相同的形状和类型
  • Saved output image

最佳答案

反转 img_graytemplate 修复了错误。

我使用的比较指标是 cv2.TM_CCORR_NORMED。这通过获取 img_graytemplate 的点积来实现,其中二进制 numpy 数组 temp_mask 的值为 1

在我的示例图像中,我想将 template 中的黑色像素与 img_gray 中的黑色像素进行匹配,但是黑色的像素值为 0。因此,我想要检测的位置的点积很低。

通过反转 img_graytemplate 我将 template 中的白色像素与 img_gray 中的白色像素进行匹配.由于白色的像素值为 255,因此白色与白色、模板与图像的点积在我想要检测的位置变得很高。

关于带掩码的 Python OpenCV matchTemplate - 在所有位置找到匹配项,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56877151/

38 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com