gpt4 book ai didi

opencv - 使用opencv2.4检测正方形

转载 作者:太空宇宙 更新时间:2023-11-03 23:02:59 26 4
gpt4 key购买 nike

我使用了一个程序来检测图像中的正方形。这与我从互联网上下载的图像配合得很好。但我应该做的是检测从相机拍摄的图像的正方形。首先,我从视频中提取图像,然后尝试从这些图像集中检测正方形,但代码不适用于那些提取的图像(但与其他图像配合使用效果很好)。我应该怎么做才能完成该任务?

#ifdef _CH_
#pragma package <opencv>
#endif

#define CV_NO_BACKWARD_COMPATIBILITY

#include <opencv2/opencv.hpp>
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <math.h>
#include <string.h>

int thresh = 50;
IplImage* img = 0;
IplImage* img0 = 0;
CvMemStorage* storage = 0;
//const char* wndname = "Square Detection Demo";

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
{
double dx1 = pt1->x - pt0->x;
double dy1 = pt1->y - pt0->y;
double dx2 = pt2->x - pt0->x;
double dy2 = pt2->y - pt0->y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
{
CvSeq* contours;
int i, c, l, N = 11;
CvSize sz = cvSize( img->width & -2, img->height & -2 );
IplImage* timg = cvCloneImage( img ); // make a copy of input image
IplImage* gray = cvCreateImage( sz, 8, 1 );
IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
IplImage* tgray;
CvSeq* result;
double s, t;
// create empty sequence that will contain points -
// 4 points per square (the square's vertices)
CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );

// select the maximum ROI in the image
// with the width and height divisible by 2
cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));

// down-scale and upscale the image to filter out the noise
cvPyrDown( timg, pyr, 7 );
cvPyrUp( pyr, timg, 7 );
tgray = cvCreateImage( sz, 8, 1 );

// find squares in every color plane of the image
for( c = 0; c < 3; c++ )
{
// extract the c-th color plane
cvSetImageCOI( timg, c+1 );
cvCopy( timg, tgray, 0 );

// try several threshold levels
for( l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
cvCanny( tgray, gray, 0, thresh, 5 );
// dilate canny output to remove potential
// holes between edge segments
cvDilate( gray, gray, 0, 1 );
}
else
{
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
}

// find contours and store them all as a list
cvFindContours( gray, storage, &contours, sizeof(CvContour),
CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );

// test each contour
while( contours )
{
// approximate contour with accuracy proportional
// to the contour perimeter
result = cvApproxPoly( contours, sizeof(CvContour), storage,
CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( result->total == 4 &&
cvContourArea(result,CV_WHOLE_SEQ,0) > 1000 &&
cvCheckContourConvexity(result) )
{
s = 0;

for( i = 0; i < 5; i++ )
{
// find minimum angle between joint
// edges (maximum of cosine)
if( i >= 2 )
{
t = fabs(angle(
(CvPoint*)cvGetSeqElem( result, i ),
(CvPoint*)cvGetSeqElem( result, i-2 ),
(CvPoint*)cvGetSeqElem( result, i-1 )));
s = s > t ? s : t;
}
}

// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( s < 0.3 )
for( i = 0; i < 4; i++ )
cvSeqPush( squares,
(CvPoint*)cvGetSeqElem( result, i ));
}

// take the next contour
contours = contours->h_next;
}
}
}

// release all the temporary images
cvReleaseImage( &gray );
cvReleaseImage( &pyr );
cvReleaseImage( &tgray );
cvReleaseImage( &timg );

return squares;
}


// the function draws all the squares in the image
void drawSquares( IplImage* img, CvSeq* squares )
{
CvSeqReader reader;
IplImage* cpy = cvCloneImage( img );
int i;

// initialize reader of the sequence
cvStartReadSeq( squares, &reader, 0 );

// read 4 sequence elements at a time (all vertices of a square)
for( i = 0; i < squares->total; i += 4 )
{
CvPoint pt[4], *rect = pt;
int count = 4;

// read 4 vertices
CV_READ_SEQ_ELEM( pt[0], reader );
CV_READ_SEQ_ELEM( pt[1], reader );
CV_READ_SEQ_ELEM( pt[2], reader );
CV_READ_SEQ_ELEM( pt[3], reader );

// draw the square as a closed polyline
cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
}

// show the resultant image
cvShowImage( "Square Detection Demo", cpy );
cvReleaseImage( &cpy );
}


//char* names[] = { "pic1.png", "pic2.png", "pic3.png",
// "pic4.png", "pic5.png", "pic6.png", 0 };

int main(int argc, char** argv)
{
int i, c;
// create memory storage that will contain all the dynamic data
storage = cvCreateMemStorage(0);

//for( i = 0; names[i] != 0; i++ )
//{
// // load i-th image
// img0 = cvLoadImage( names[i], 1 );
// if( !img0 )
// {
// printf("Couldn't load %s\n", names[i] );
// continue;
// }
img0 = cvLoadImage("frame_21.jpg");
img = cvCloneImage( img0 );

// create window and a trackbar (slider) with parent "image" and set callback
// (the slider regulates upper threshold, passed to Canny edge detector)
// cvNamedWindow( "qq");

// find and draw the squares
drawSquares( img, findSquares4( img, storage ) );

// wait for key.
// Also the function cvWaitKey takes care of event processing
c = cvWaitKey(0);
// release both images
cvReleaseImage( &img );
cvReleaseImage( &img0 );
// clear memory storage - reset free space position
cvClearMemStorage( storage );
/*if( (char)c == 27 )
break;*/
/* }*/

// cvDestroyWindow( "qq" );

return 0;
}

这是从视频中提取的示例图像 -----> road sign

最佳答案

我在不同的图像上测试了代码,它对所有图像都工作正常,有一个 if 条件是 findsuqares4 函数

                if( result->total == 4 &&
cvContourArea(result,CV_WHOLE_SEQ,0) > 10000 &&
cvCheckContourConvexity(result) )

10000 是要检测的正方形的阈值。我的意思是检测到面积超过 10000 的正方形,其余的都将被丢弃。所以你需要根据你的要求改变阈值。我上传了一个阈值为 100 的结果。查看结果。

Squares detected

关于opencv - 使用opencv2.4检测正方形,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11913313/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com