- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在进行立体视觉设置,机翼上方安装了 2 个摄像头。左摄像头向内倾斜几度,而右摄像头与机翼平行。所有可用图像 here
然后使用(剪切和粘贴,但不按原样编译)
// performing stereocalibration given imagePoint_leftcamera and rightcamera
Flea3.reproj_error = stereoCalibrate(objectPoints,imagePoints_left,imagePoints_right,cameraMatrix_left,
distCoeffs_left,cameraMatrix_right,distCoeffs_right,imageSize, Flea3.R, Flea3.T, Flea3.E, Flea3.F,
TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),
CV_CALIB_FIX_INTRINSIC );
// Peform stereorectification
stereoRectify(cameraMatrix_left, distCoeffs_left, cameraMatrix_right, distCoeffs_right, imageSize, Flea3.R, Flea3.T, Flea3.R1, Flea3.R2, Flea3.P1, Flea3.P2, Flea3.Q, CALIB_ZERO_DISPARITY, -1, Size(), &Flea3.validRoi_left, &Flea3.validRoi_right);
//computes undistort and rectify maps
initUndistortRectifyMap(cameraMatrix_left, distCoeffs_left, R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][2]);
initUndistortRectifyMap(cameraMatrix_right, distCoeffs_right, R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][3]);
remap(src_left, img_left, rmap[0][0], rmap[0][4], CV_INTER_LINEAR);
remap(src_right, img_right, rmap[1][0], rmap[1][5], CV_INTER_LINEAR);
右图中的黑色区域不应该在右边吗?既然右边的摄像头应该向右倾斜?
此外,尽管立体校正似乎有效,但 ROI(用红色框表示)显然是错误的!
我的校准好吗?顺便说一句,我的 cv::stereocalibrate 返回的重新投影错误是 0.6004
最佳答案
请查看底部的绿色匹配线 - 没有对应关系。在实践中,您必须在不同的位置和方向使用大约 20-30 个棋盘图案姿势(校准装置),包括深度旋转(倾斜、倾斜)、平面内旋转,并且请至少在您的某些部分覆盖整个图像校准镜头或在不同的镜头中逐个部分一致地覆盖它。
需要多个校准图像的原因如下。考虑齐次坐标中的无穷远点(称为理想点或消失点)。沿x方向的理想点是
Xinf = [1, 0, 0, 0]T
如果你把它带回欧几里德空间,你会得到 [1/0=Inf, 0/0, 0/0]T。如果你将你的投影矩阵从左边乘以 Xinf(同源坐标),结果除了第一列之外的所有地方都会有零。 结论: X 方向的消失点为您提供了投影矩阵的第一列。其他列来自其他消失点。反之则更难证明——即要获得正确的 P,你需要消失点,让我们暂时假设它。
您的校准问题在于您的装备中没有清晰的消失点,因为它是前置摄像头。您必须倾斜它以使投影线收敛(在多个方向成为消失点)。另一个问题是您的装备只占据了图像的一小部分,这是以其他区域为代价进行优化的地方。使用多个钻机姿势重新校准,您将获得更好的结果。
关于opencv - OpenCV 中的立体校准 + 校正,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22389012/
我正在尝试从我的系统中完全删除 opencv。我试图学习 ROS,而在教程中我遇到了一个问题。创建空工作区后,我调用catkin_make 它给出了一个常见错误,我在 answers.ros 中搜索并
我在尝试逐步转移对warpAffine的调用时遇到崩溃(不是异常): void rotateImage( const Mat& source, double degree, Mat& output )
如何处理opencv gpu异常?是否有用于opencvgpu异常处理的特定错误代码集api? 我尝试了很多搜索,但只有1个错误代码,即CV_GpuNotSupported。 请帮帮我。 最佳答案 虽
笔记 我是 OpenCV(或计算机视觉)的新手,所以告诉我搜索查询会很有帮助! 我想问什么 我想编写一个从图片中提取名片的程序。 我能够提取粗略的轮廓,但反射光会变成噪点,我无法提取准确的轮廓。请告诉
我想根据像素的某个阈值将Mono16类型的Mat转换为二进制图像。我尝试使用以下内容: 阈值(img,ret,0.1,1,CV_THRESH_BINARY); 尝试编译时,出现make错误,提示: 错
我对使用GPU加速的OpenCV中的卷积函数有疑问。 使用GPU的卷积速度大约快3.5 运行时: convolve(src_32F, kernel, cresult, false, cbuffer);
我正在尝试使用非对称圆圈网格执行相机校准。 我通常找不到适合CirclesGridFinder的文档,尤其是findHoles()函数的文档。 如果您有关于此功能如何工作以及其参数含义的信息,将不胜感
在计算机上绘图和在 OpenCV 的投影仪上投影之间有什么区别吗? 一种选择是投影显示所有内容的计算机屏幕。但也许也有这样的选择,即在投影仪上精确地绘制和投影图像,仅使用计算机作为计算机器。如果我能做
我将Processing(processing.org)用于需要人脸跟踪的项目。现在的问题是由于for循环,程序将耗尽内存。我想停止循环或至少解决内存不足的问题。这是代码。 import hyperm
我有下面的代码: // Image Processing.cpp : Defines the entry point for the console application. // //Save
我正在为某些项目使用opencv。并有应解决的任务。 任务很简单。我有一张主图片,并且有一个模板,而不是将主图片与模板进行比较。我使用matchTemplate()函数。我只是好奇一下。 在文档中,我
我正在尝试使用以下命令创建级联分类器: haartraining -data haarcascade -vec samples.vec -bg negatives.dat -nstages 20 -n
我试图使用OpenCV检测黑色图像中一组形状的颜色,为此我使用了Canny检测。但是,颜色输出总是返回为黑色。 std::vector > Asteroids::DetectPoints(const
我正在尝试使用OpenCv 2.4.5从边缘查找渐变方向,但是我在使用cvSobel()时遇到问题,以下是错误消息和我的代码。我在某处读到它可能是由于浮点(??)之间的转换,但我不知道如何解决它。有帮
我正在尝试构建循环关闭算法,但是在开始开发之前,我想测试哪种功能描述符在真实数据集上效果更好。 我有两个在两个方向拍摄的走廊图像,一个进入房间,另一个离开同一个房间。因此它们代表相同的场景,但具有2个
有没有一种方法可以比较直方图,但例如要排除白色,因此白色不会影响比较。 最佳答案 白色像素有 饱和度 , S = 0 .因此,在创建直方图时很容易从计数中删除白色像素。请执行下列操作: 从 BGR 转
就像本主题的标题一样,如何在OpenCV中确定图像的特定像素(灰度或彩色)是否饱和(例如,亮度过高)? 先感谢您。 最佳答案 根据定义,饱和像素是指与强度(即灰度值或颜色分量之一)等于255相关联的像
我是OpenCV的新用户,正在从事大学项目。程序会获取输入图像,对其进行综合模糊处理,然后对其进行模糊处理。当对合成模糊图像进行反卷积时,会生成边界伪像,因为...好吧,到目前为止,我还没有实现边界条
我想知道OpenCV是haar特征还是lbp是在多尺度搜索过程中缩放图像还是像论文中提到的那样缩放特征本身? 编辑:事实证明,检测器可以缩放图像,而不是功能。有人知道为什么吗?通过缩放功能可以更快。
我在openCv中使用SVM.train命令(已定义了适当的参数)。接下来,我要使用我的算法进行分类,而不是使用svm.predict。 可能吗?我可以访问训练时生成的支持 vector 吗?如果是这
我是一名优秀的程序员,十分优秀!