gpt4 book ai didi

python - 改进水平线检测的 HoughLines(Python、OpenCV)

转载 作者:太空宇宙 更新时间:2023-11-03 22:23:06 33 4
gpt4 key购买 nike

我有这个源图像:

src

我的目标是移除底线,同时保持字母/数字不变。

这是我使用的代码:

import cv2
import numpy as np

img = cv2.imread('src.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

edges = cv2.Canny(gray,100,200,apertureSize = 5)

minLineLength = 0
maxLineGap = 19
lines = cv2.HoughLinesP(edges,1,np.pi/180,15,minLineLength,maxLineGap)
for x in range(0, len(lines)):
for x1,y1,x2,y2 in lines[x]:
cv2.line(img,(x1,y1),(x2,y2),(255,255,255),2)

cv2.imshow('hough',img)
cv2.waitKey(0)

目前我取得的最好成绩是这样的:

out

如何改进它,尽可能清洁图像?例如,图像周围的所有碎片,文字下方的点和(静止)线,我该如何去除它们?

谢谢。

OT:有没有一种方法可以创建一个跟踪栏来更改参数(apertureSize、minLineLength、maxLineGap 等)以实时查看结果?

最佳答案

根据@Link 的要求:

我在 python 方面的经验有限,所以我不知道这段代码的线程安全性如何,但这应该向您展示在 python OpenCV 中创建轨迹栏的基础知识。

def onChange(pos):
global img
global gray
global dst

dst = np.copy(img)

apertureSize = cv2.getTrackbarPos("ApertureSize", "Result")
minLineLength = cv2.getTrackbarPos("LineLength", "Result")
maxLineGap = cv2.getTrackbarPos("LineGap", "Result")

# according to OpenCV, aperture size must be odd and between 3 and 7
if apertureSize % 2 == 0:
apertureSize += 1
if apertureSize < 3:
apertureSize = 3

edges = cv2.Canny(gray,100,200,apertureSize = apertureSize)

lines = cv2.HoughLinesP(edges,1,np.pi/180,15,minLineLength,maxLineGap)
for x in range(0, len(lines)):
for x1,y1,x2,y2 in lines[x]:
cv2.line(dst,(x1,y1),(x2,y2),(255,255,255),2)

#Run Main
if __name__ == "__main__" :

img = cv2.imread("image.png", -1)
dst = np.copy(img)

cv2.namedWindow("Result", cv2.WINDOW_NORMAL)

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#default values for trackbars
defaultApertureSize = 5
minLineLength = 0
maxLineGap = 19

# according to OpenCV, aperture size must be odd and between 3 and 7
# the aperture size range is (0 - 6)
cv2.createTrackbar("ApertureSize", "Result", defaultApertureSize, 6, onChange)

# line length range is (0 - 10)
cv2.createTrackbar("LineLength", "Result", minLineLength, 10, onChange)

# line gap range is (0 - 19)
cv2.createTrackbar("LineGap", "Result", maxLineGap, 19, onChange)

while True:
cv2.imshow("Result", dst)
key = cv2.waitKey(1)
if key == ord('q'):
break

cv2.destroyAllWindows()

关于python - 改进水平线检测的 HoughLines(Python、OpenCV),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46472713/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com