gpt4 book ai didi

python-3.x - 函数 'contourArea' 中的 OpenCV(4.0.0) 断言失败

转载 作者:太空宇宙 更新时间:2023-11-03 22:07:34 24 4
gpt4 key购买 nike

我的目标是使用 HOG 描述符识别汽车标志。我正在关注教程链接 https://gurus.pyimagesearch.com/lesson-sample-histogram-of-oriented-gradients-and-car-logo-recognition/# .我在不同的文件夹中有测试和训练图像。

使用以下代码提取 HOG 特征时:

# import the necessary packages
from sklearn.neighbors import KNeighborsClassifier
from skimage import exposure
from skimage import feature
from imutils import paths
import argparse
import imutils
import cv2

# construct the argument parse and parse command line arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--training", required=True, help="Path to the logos training dataset")
ap.add_argument("-t", "--test", required=True, help="Path to the test dataset")
args = vars(ap.parse_args())

# initialize the data matrix and labels
print('[INFO] extracting features...')
data = []
labels = []


# loop over the image paths in the training set
for imagePath in paths.list_images(args["training"]):
# extract the make of the car
make = imagePath.split("/")[-2]

# load the image, convert it to grayscale, and detect edges
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edged = imutils.auto_canny(gray)

# find contours in the edge map, keeping only the largest one which
# is presmumed to be the car logo
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
c = max(cnts, key=cv2.contourArea)

# extract the logo of the car and resize it to a canonical width
# and height
(x, y, w, h) = cv2.boundingRect(c)
logo = gray[y:y + h, x:x + w]
logo = cv2.resize(logo, (200, 100))

# extract Histogram of Oriented Gradients from the logo
H = feature.hog(logo, orientations=9, pixels_per_cell=(10, 10),
cells_per_block=(2, 2), transform_sqrt=True, block_norm="L1")

# update the data and labels
data.append(H)
labels.append(make)

我遇到了这个错误:

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/sklearn/externals/joblib/externals/cloudpickle/cloudpickle.py:47: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp
[INFO] extracting features...
Traceback (most recent call last):
File "hog.py", line 36, in <module>
c = max(cnts, key=cv2.contourArea)
cv2.error: OpenCV(4.0.0) /Users/travis/build/skvark/opencv-python/opencv/modules/imgproc/src/shapedescr.cpp:272: error: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S) in function 'contourArea'

如何消除此错误?

最佳答案

在查找图像edged的计数之前,将其转换为uint8类型:

edged = np.uint8(edged)
cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

我已经编辑了你的代码。我在我的系统上检查过它,它工作正常。试试这个:

# import the necessary packages
from sklearn.neighbors import KNeighborsClassifier
from skimage import exposure
from skimage import feature
from imutils import paths
import argparse
import imutils
import cv2
# construct the argument parse and parse command line arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--training", required=True, help="Path to the logos training dataset")
ap.add_argument("-t", "--test", required=True, help="Path to the test dataset")
args = vars(ap.parse_args())

# initialize the data matrix and labels
print('[INFO] extracting features...')
data = []
labels = []


# loop over the image paths in the training set
for imagePath in paths.list_images(args["training"]):
# extract the make of the car
make = imagePath.split("/")[-2]

# load the image, convert it to grayscale, and detect edges
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edged = imutils.auto_canny(gray)

# find contours in the edge map, keeping only the largest one which
# is presmumed to be the car logo
edged = np.uint8(edged)
cnts, _ = = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if cnts is not None:
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
c = max(cnts, key=cv2.contourArea)

# extract the logo of the car and resize it to a canonical width
# and height
(x, y, w, h) = cv2.boundingRect(c)
logo = gray[y:y + h, x:x + w]
logo = cv2.resize(logo, (200, 100))

# extract Histogram of Oriented Gradients from the logo
H = feature.hog(logo, orientations=9, pixels_per_cell=(10, 10),
cells_per_block=(2, 2), transform_sqrt=True, block_norm="L1")

# update the data and labels
data.append(H)
labels.append(make)

关于python-3.x - 函数 'contourArea' 中的 OpenCV(4.0.0) 断言失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55099757/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com