gpt4 book ai didi

android - OpenCV Homography - 4线不在对象周围

转载 作者:太空宇宙 更新时间:2023-11-03 21:54:10 26 4
gpt4 key购买 nike

我尝试做 this ,我发现 this 。他的问题不是我想问的,但我想做同样的事情。我可以在图像上找到特征并绘制特征描述符,但是对象周围的边界框很奇怪。抱歉,我不能在这里发布我的结果,出来的线不是矩形,不在对象 here is my result 周围,我做错了什么还是有其他方法可以做到?

对不起我的英语不好,谢谢你的帮助

    private void Featrue_found(){       

MatOfKeyPoint templateKeypoints = new MatOfKeyPoint();
MatOfKeyPoint keypoints = new MatOfKeyPoint();
MatOfDMatch matches = new MatOfDMatch();

Object = new Mat(CvType.CV_32FC2);
Object = Highgui.imread(Environment.getExternalStorageDirectory()+ "/Android/data/" + getApplicationContext().getPackageName() + "/Files/Object.jpg", Highgui.CV_LOAD_IMAGE_UNCHANGED);
Resource = new Mat(CvType.CV_32FC2);
Resource = Highgui.imread(Environment.getExternalStorageDirectory()+ "/Android/data/" + getApplicationContext().getPackageName() + "/Files/Resource.jpg", Highgui.CV_LOAD_IMAGE_UNCHANGED);
Mat imageOut = Resource.clone();


FeatureDetector myFeatures = FeatureDetector.create(FeatureDetector.ORB);
myFeatures.detect(Resource, keypoints);
myFeatures.detect(Object, templateKeypoints);

DescriptorExtractor Extractor = DescriptorExtractor.create(DescriptorExtractor.ORB);
Mat descriptors1 = new Mat();
Mat descriptors2 = new Mat();
Extractor.compute(Resource, keypoints, descriptors1);
Extractor.compute(Resource, templateKeypoints, descriptors2);

//add Feature descriptors
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);
matcher.match(descriptors1, descriptors2, matches);

List<DMatch> matches_list = matches.toList();

MatOfDMatch good_matches = new MatOfDMatch();
double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors1.rows(); i++ )
{
double dist = matches_list.get(i).distance;
if( dist < min_dist )
min_dist = dist;
if( dist > max_dist )
max_dist = dist;
}

//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
for( int i = 0; i < descriptors1.rows(); i++ )
{
if( matches_list.get(i).distance < 3*min_dist ){
MatOfDMatch temp = new MatOfDMatch();
temp.fromArray(matches.toArray()[i]);
good_matches.push_back(temp);
}
}

MatOfByte drawnMatches = new MatOfByte();
Features2d.drawMatches(Resource, keypoints, Object, templateKeypoints, good_matches, imageOut, Scalar.all(-1), Color_Red, drawnMatches, Features2d.NOT_DRAW_SINGLE_POINTS);
//no Feature descriptors
//Features2d.drawMatches(Resource, keypoints, Object, templateKeypoints, matches, imageOut);

LinkedList<Point> objList = new LinkedList<Point>();
LinkedList<Point> sceneList = new LinkedList<Point>();
List<DMatch> good_matches_list = good_matches.toList();

List<KeyPoint> keypoints_objectList = templateKeypoints.toList();
List<KeyPoint> keypoints_sceneList = keypoints.toList();

for(int i = 0; i<good_matches_list.size(); i++)
{
objList.addLast(keypoints_objectList.get(good_matches_list.get(i).queryIdx).pt);
sceneList.addLast(keypoints_sceneList.get(good_matches_list.get(i).trainIdx).pt);
}

MatOfPoint2f obj = new MatOfPoint2f();
obj.fromList(objList);

MatOfPoint2f scene = new MatOfPoint2f();

scene.fromList(sceneList);
//findHomography
Mat hg = Calib3d.findHomography(obj, scene);

Mat obj_corners = new Mat(4,1,CvType.CV_32FC2);
Mat scene_corners = new Mat(4,1,CvType.CV_32FC2);

obj_corners.put(0, 0, new double[] {0,0});
obj_corners.put(1, 0, new double[] {Object.cols(),0});
obj_corners.put(2, 0, new double[] {Object.cols(),Object.rows()});
obj_corners.put(3, 0, new double[] {0,Object.rows()});
//obj_corners:input
Core.perspectiveTransform(obj_corners, scene_corners, hg);

Core.line(imageOut, new Point(scene_corners.get(0,0)), new Point(scene_corners.get(1,0)), new Scalar(0, 255, 0),4);
Core.line(imageOut, new Point(scene_corners.get(1,0)), new Point(scene_corners.get(2,0)), new Scalar(0, 255, 0),4);
Core.line(imageOut, new Point(scene_corners.get(2,0)), new Point(scene_corners.get(3,0)), new Scalar(0, 255, 0),4);
Core.line(imageOut, new Point(scene_corners.get(3,0)), new Point(scene_corners.get(0,0)), new Scalar(0, 255, 0),4);

Highgui.imwrite(Environment.getExternalStorageDirectory()+ "/Android/data/" + getApplicationContext().getPackageName() + "/Files/result_match.jpg", imageOut);


}

最佳答案

您的情况下匹配次数不够。匹配也不正确。为了获得最佳结果,我建议在单应性计算中使用 RANSAC 并更改良好匹配的阈值。

    if( matches_list.get(i).distance < 3*min_dist ){
MatOfDMatch temp = new MatOfDMatch();
temp.fromArray(matches.toArray()[i]);
good_matches.push_back(temp);
}

将 3*min_dist 设为 4*min_dist 并检查是否存在良好的特征匹配。如果不是,那么您应该选择其他一些特征检测器(SURF、SIFT、harrison)Harrison 可能会给出嘈杂的结果,但它会产生最大数量的特征点。或者,如果这些都不起作用,则使用更好的图像质量图像。

关于android - OpenCV Homography - 4线不在对象周围,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19906282/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com