- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个主要包含 OpenCV 和 NumPy 以及一些 SciPy 的程序。该系统需要是帧速率接近 30 fps 的实时系统,但目前只有大约 10 fps。使用 Cython 会有助于加快速度吗?我问是因为 OpenCV 已经用 C++ 编写并且应该已经非常优化,据我所知,NumPy 也已经非常优化。那么使用 Cython 是否有助于改善我的程序的处理时间?
最佳答案
希望这对某人有帮助
找到这个很棒的帖子 Use Cython to get more than 30X speedup on your Python code
在通过摄像头的视频流中对每两帧使用相同的阶乘计算
video_python.py
import numpy as np
import cv2
import time
def function(number):
cap = cv2.VideoCapture(0)
increment = 0
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Display the resulting frame
cv2.imshow('frame',gray)
start_time = time.time()
y = 1
for i in range(1, number+1):
y *= i
increment+=1
if increment >2:
# print(time.time()-start_time)
print('Python increment ',increment)
break
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return 0
video_cython.pyx
import numpy as np
import cv2
import time
cpdef int function(int number):
cdef bint video_true = True
cap = cv2.VideoCapture(0)
cdef int y = 1
cdef int i
cdef int increment = 0
cdef int increment_times = 0
while(video_true):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Display the resulting frame
cv2.imshow('frame',gray)
start_time = time.time()
for i in range(1, number+1):
y *= i
increment_times+=1
if increment_times > 2:
# print(time.time()-start_time)
print('Cython increment ',increment_times)
break
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
return 0
设置.py
from distutils.core import setup
from Cython.Build import cythonize
setup(ext_modules = cythonize('video_cython.pyx',compiler_directives={'language_level' : "3"}))
然后运行
python setup.py build_ext --inplace
video_test.py
import video_python
import video_cython
import time
number = 100000
start = time.time()
video_python.function(number)
end = time.time()
py_time = end - start
print("Python time = {}".format(py_time))
start = time.time()
video_cython.function(number)
end = time.time()
cy_time = end - start
print("Cython time = {}".format(cy_time))
print("Speedup = {}".format(py_time / cy_time))
结果:
Python increment 3
Python time = 6.602917671203613
Cython increment 3
Cython time = 0.4903101921081543
Speedup = 13.466817083311046
所以在循环中做任何与 python 相关的事情都可以提高速度
关于python - Cython + OpenCV 和 NumPy,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50535498/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!