gpt4 book ai didi

python - 在 Keras 中编写用于图像预处理的自定义函数

转载 作者:太空宇宙 更新时间:2023-11-03 21:49:39 24 4
gpt4 key购买 nike

我是一名初学者,正在使用 keras_flow_from_dataframe 类训练有关糖尿病视网膜病变的图像数据集。但是我的模型一直欠拟合。所以我尝试预处理,通过使用 OpenCV 的自适应阈值实现编写一个自定义预处理函数传递到我的图像数据生成器类中。当我在 Keras 之外使用它时,该函数运行良好,但是当我将它添加到我的图像数据生成器类并适合我的模型时,它返回一个类型错误,提示 bad argument type for built-in operation在我的第一个纪元开始之前。

这是预处理代码:

def preprocess(im):

im = cv2.imread(im, 1)
im= cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im=cv2.resize(im, (300,300))
im.resize(300, 300, 1)
block_size = 73
constant = 2
# ADAPTIVE GAUSSIAN THRESHOLDING

thr2 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, block_size, constant)
return thr2

当我使用我的数据框中的图像对其进行测试时,它在 Keras 之外运行良好,但是当我将它添加到我的图像数据生成器类时,它会抛出错误。

train_datagen = ImageDataGenerator(
rotation_range=30,
width_shift_range=0.4,
height_shift_range=0.4,
shear_range=0.3,
zoom_range=0.3,
horizontal_flip = True,
fill_mode='nearest',
preprocessing_function = preprocess)

valid_datagen = ImageDataGenerator(preprocessing_function = preprocess)

然后我从数据框中加载我的数据集:

from keras.preprocessing.image import ImageDataGenerator

traingen = train_datagen.flow_from_dataframe(x_train, x_col='path', y_col='level',class_mode='other',
target_size=(300,300), color_mode='grayscale', batch_size=16)

validgen = valid_datagen.flow_from_dataframe(valid, x_col='path', y_col='level',class_mode='other',
target_size=(300,300), color_mode='grayscale', batch_size=16)

然后我使用 model.fit_generator 拟合模型,然后抛出类型错误:内置操作的错误参数类型

TypeError                                 Traceback (most recent call last)
<ipython-input-126-30ceb84a2574> in <module>()
2
3 history = model.fit_generator(traingen, validation_data = validgen, epochs=100, steps_per_epoch=10,
----> 4 validation_steps=10, verbose=1, callbacks=[lr_reduction])
5
6

~/var/python/lib/python3.6/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper

~/var/python/lib/python3.6/site-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1416 use_multiprocessing=use_multiprocessing,
1417 shuffle=shuffle,
-> 1418 initial_epoch=initial_epoch)
1419
1420 @interfaces.legacy_generator_methods_support

~/var/python/lib/python3.6/site-packages/keras/engine/training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
179 batch_index = 0
180 while steps_done < steps_per_epoch:
--> 181 generator_output = next(output_generator)
182
183 if not hasattr(generator_output, '__len__'):

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get(self)
599 except Exception as e:
600 self.stop()
--> 601 six.reraise(*sys.exc_info())
602
603

~/var/python/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
691 if value.__traceback__ is not tb:
692 raise value.with_traceback(tb)
--> 693 raise value
694 finally:
695 value = None

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get(self)
593 try:
594 while self.is_running():
--> 595 inputs = self.queue.get(block=True).get()
596 self.queue.task_done()
597 if inputs is not None:

~/var/python/lib/python3.6/multiprocessing/pool.py in get(self, timeout)
642 return self._value
643 else:
--> 644 raise self._value
645
646 def _set(self, i, obj):

~/var/python/lib/python3.6/multiprocessing/pool.py in worker(inqueue, outqueue, initializer, initargs, maxtasks, wrap_exception)
117 job, i, func, args, kwds = task
118 try:
--> 119 result = (True, func(*args, **kwds))
120 except Exception as e:
121 if wrap_exception and func is not _helper_reraises_exception:

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get_index(uid, i)
399 The value at index `i`.
400 """
--> 401 return _SHARED_SEQUENCES[uid][i]
402
403

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/iterator.py in __getitem__(self, idx)
63 index_array = self.index_array[self.batch_size * idx:
64 self.batch_size * (idx + 1)]
---> 65 return self._get_batches_of_transformed_samples(index_array)
66
67 def __len__(self):

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/iterator.py in _get_batches_of_transformed_samples(self, index_array)
233 params = self.image_data_generator.get_random_transform(x.shape)
234 x = self.image_data_generator.apply_transform(x, params)
--> 235 x = self.image_data_generator.standardize(x)
236 batch_x[i] = x
237 # optionally save augmented images to disk for debugging purposes

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/image_data_generator.py in standardize(self, x)
695 """
696 if self.preprocessing_function:
--> 697 x = self.preprocessing_function(x)
698 if self.rescale:
699 x *= self.rescale

<ipython-input-112-7bddefa5e731> in preprocess(im)
1 def preprocess(im):
----> 2 im = cv2.imread(im, 1)
3 im= cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
4 im=cv2.resize(im, (300,300))
5 im.resize(300, 300, 1)

TypeError: bad argument type for built-in operation


TypeError Traceback (most recent call last)
<ipython-input-126-30ceb84a2574> in <module>()
2
3 history = model.fit_generator(traingen, validation_data = validgen, epochs=100, steps_per_epoch=10,
----> 4 validation_steps=10, verbose=1, callbacks=[lr_reduction])
5
6

~/var/python/lib/python3.6/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper

~/var/python/lib/python3.6/site-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1416 use_multiprocessing=use_multiprocessing,
1417 shuffle=shuffle,
-> 1418 initial_epoch=initial_epoch)
1419
1420 @interfaces.legacy_generator_methods_support

~/var/python/lib/python3.6/site-packages/keras/engine/training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
179 batch_index = 0
180 while steps_done < steps_per_epoch:
--> 181 generator_output = next(output_generator)
182
183 if not hasattr(generator_output, '__len__'):

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get(self)
599 except Exception as e:
600 self.stop()
--> 601 six.reraise(*sys.exc_info())
602
603

~/var/python/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
691 if value.__traceback__ is not tb:
692 raise value.with_traceback(tb)
--> 693 raise value
694 finally:
695 value = None

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get(self)
593 try:
594 while self.is_running():
--> 595 inputs = self.queue.get(block=True).get()
596 self.queue.task_done()
597 if inputs is not None:

~/var/python/lib/python3.6/multiprocessing/pool.py in get(self, timeout)
642 return self._value
643 else:
--> 644 raise self._value
645
646 def _set(self, i, obj):

~/var/python/lib/python3.6/multiprocessing/pool.py in worker(inqueue, outqueue, initializer, initargs, maxtasks, wrap_exception)
117 job, i, func, args, kwds = task
118 try:
--> 119 result = (True, func(*args, **kwds))
120 except Exception as e:
121 if wrap_exception and func is not _helper_reraises_exception:

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get_index(uid, i)
399 The value at index `i`.
400 """
--> 401 return _SHARED_SEQUENCES[uid][i]
402
403

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/iterator.py in __getitem__(self, idx)
63 index_array = self.index_array[self.batch_size * idx:
64 self.batch_size * (idx + 1)]
---> 65 return self._get_batches_of_transformed_samples(index_array)
66
67 def __len__(self):

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/iterator.py in _get_batches_of_transformed_samples(self, index_array)
233 params = self.image_data_generator.get_random_transform(x.shape)
234 x = self.image_data_generator.apply_transform(x, params)
--> 235 x = self.image_data_generator.standardize(x)
236 batch_x[i] = x
237 # optionally save augmented images to disk for debugging purposes

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/image_data_generator.py in standardize(self, x)
695 """
696 if self.preprocessing_function:
--> 697 x = self.preprocessing_function(x)
698 if self.rescale:
699 x *= self.rescale

<ipython-input-112-7bddefa5e731> in preprocess(im)
1 def preprocess(im):
----> 2 im = cv2.imread(im, 1)
3 im= cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
4 im=cv2.resize(im, (300,300))
5 im.resize(300, 300, 1)

TypeError: bad argument type for built-in operation


TypeError Traceback (most recent call last)
<ipython-input-126-30ceb84a2574> in <module>()
2
3 history = model.fit_generator(traingen, validation_data = validgen, epochs=100, steps_per_epoch=10,
----> 4 validation_steps=10, verbose=1, callbacks=[lr_reduction])
5
6

~/var/python/lib/python3.6/site-packages/keras/legacy/interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper

~/var/python/lib/python3.6/site-packages/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1416 use_multiprocessing=use_multiprocessing,
1417 shuffle=shuffle,
-> 1418 initial_epoch=initial_epoch)
1419
1420 @interfaces.legacy_generator_methods_support

~/var/python/lib/python3.6/site-packages/keras/engine/training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
179 batch_index = 0
180 while steps_done < steps_per_epoch:
--> 181 generator_output = next(output_generator)
182
183 if not hasattr(generator_output, '__len__'):

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get(self)
599 except Exception as e:
600 self.stop()
--> 601 six.reraise(*sys.exc_info())
602
603

~/var/python/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
691 if value.__traceback__ is not tb:
692 raise value.with_traceback(tb)
--> 693 raise value
694 finally:
695 value = None

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get(self)
593 try:
594 while self.is_running():
--> 595 inputs = self.queue.get(block=True).get()
596 self.queue.task_done()
597 if inputs is not None:

~/var/python/lib/python3.6/multiprocessing/pool.py in get(self, timeout)
642 return self._value
643 else:
--> 644 raise self._value
645
646 def _set(self, i, obj):

~/var/python/lib/python3.6/multiprocessing/pool.py in worker(inqueue, outqueue, initializer, initargs, maxtasks, wrap_exception)
117 job, i, func, args, kwds = task
118 try:
--> 119 result = (True, func(*args, **kwds))
120 except Exception as e:
121 if wrap_exception and func is not _helper_reraises_exception:

~/var/python/lib/python3.6/site-packages/keras/utils/data_utils.py in get_index(uid, i)
399 The value at index `i`.
400 """
--> 401 return _SHARED_SEQUENCES[uid][i]
402
403

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/iterator.py in __getitem__(self, idx)
63 index_array = self.index_array[self.batch_size * idx:
64 self.batch_size * (idx + 1)]
---> 65 return self._get_batches_of_transformed_samples(index_array)
66
67 def __len__(self):

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/iterator.py in _get_batches_of_transformed_samples(self, index_array)
233 params = self.image_data_generator.get_random_transform(x.shape)
234 x = self.image_data_generator.apply_transform(x, params)
--> 235 x = self.image_data_generator.standardize(x)
236 batch_x[i] = x
237 # optionally save augmented images to disk for debugging purposes

~/var/python/lib/python3.6/site-packages/keras_preprocessing/image/image_data_generator.py in standardize(self, x)
695 """
696 if self.preprocessing_function:
--> 697 x = self.preprocessing_function(x)
698 if self.rescale:
699 x *= self.rescale

<ipython-input-112-7bddefa5e731> in preprocess(im)
1 def preprocess(im):
----> 2 im = cv2.imread(im, 1)
3 im= cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
4 im=cv2.resize(im, (300,300))
5 im.resize(300, 300, 1)

TypeError: bad argument type for built-in operation

我也考虑过预处理图像并将它们保存到一个文件夹中,然后我将它们从该文件夹加载到一个数据框中,但这在计算上非常昂贵且耗时。

最佳答案

我遇到了像你这样的问题,我的老师通过指向 tf preprocess_function 的文档帮助我,它说 preprocess_function 参数是一个图像,你可以在 this 上阅读更多信息.

这就是它在 cv2.imread(image) 处给您错误的原因。您应该删除该行,因为 im 是生成器提供给您的图像。不需要加载它,因为它已经加载了

我的一个很好,希望你的也很好。

关于python - 在 Keras 中编写用于图像预处理的自定义函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55244001/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com