- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个维度为(690L,15L)的二维numpy数组。我需要仅在某些特定列中计算此数据集上的列均值,但有一个条件:当且仅当特定列的同一行中的元素满足条件时,我才需要包含一行。让我用一些代码来更清楚。
f = open("data.data")
dataset = np.loadtxt(fname = f, delimiter = ',')
我有一个充满索引的数组,我需要在其中执行均值(和方差)
index_catego = [0, 3, 4, 5, 7, 8, 10, 11]
条件是数据集[i, 14] == 1
作为输出,我想要一个长度类似于 len(index_catego) 的一维数组,其中该数组的每个元素是前面列的平均值
output = [mean_of_index_0, mean_of_index_3, ..., mean_of_index_11]
我最近正在使用 Python,但我确信有一种很酷的方法可以使用 np.where
、mask
、np.mean
来实现此目的> 或其他东西。
我已经实现了一个解决方案,但它并不优雅,我不确定它是否正确。
import numpy as np
index_catego = [0, 3, 4, 5, 7, 8, 10, 11]
matrix_mean_positive = []
matrix_variance_positive = []
matrix_mean_negative = []
matrix_variance_negative = []
n_positive = 0
n_negative = 0
sum_positive = np.empty(len(index_catego))
sum_negative = np.empty(len(index_catego))
for i in range(dataset.shape[0]):
if dataset[i, 14] == 0:
n_positive = n_positive + 1
j = 0
for k in index_catego:
sum_positive[j] = sum_positive[j] + dataset[i, k]
j = j + 1
else:
n_negative = n_negative + 1
j = 0
for k in index_catego:
sum_negative[j] = sum_negative[j] + dataset[i, k]
j = j + 1
for item in np.nditer(sum_positive):
matrix_mean_positive.append(item / n_positive)
for item in np.nditer(sum_negative):
matrix_mean_negative.append(item / n_negative)
print(matrix_mean_positive)
print(matrix_mean_negative)
如果你想尝试你的解决方案,我提供了一些数据示例
1,22.08,11.46,2,4,4,1.585,0,0,0,1,2,100,1213,0
0,22.67,7,2,8,4,0.165,0,0,0,0,2,160,1,0
0,29.58,1.75,1,4,4,1.25,0,0,0,1,2,280,1,0
0,21.67,11.5,1,5,3,0,1,1,11,1,2,0,1,1
1,20.17,8.17,2,6,4,1.96,1,1,14,0,2,60,159,1
0,15.83,0.585,2,8,8,1.5,1,1,2,0,2,100,1,1
1,17.42,6.5,2,3,4,0.125,0,0,0,0,2,60,101,0
感谢您的帮助。
更新1:我尝试过这个
output_positive = dataset[:, index_catego][dataset[:, 14] == 0]
mean_p = output_positive.mean(axis = 0)
print(mean_p)
output_negative = dataset[:, index_catego][dataset[:, 14] == 1]
mean_n = output_negative.mean(axis = 0)
print(mean_n)
但是意味着第一个解决方案(解决方案不酷)和第二个解决方案(单行酷解决方案)计算的结果都是不同的。我检查了 dataset[:, index_catego][dataset[:, 14] == 0]
和 dataset[:, index_catego][dataset[:, 14] == 1]
选择并且看起来正确(正确的尺寸和正确的元素)。
更新2:好吧,第一个解决方案是错误的,因为(例如)第一列的元素只有 0 和 1,但平均值返回的值 > 1。我不知道我在哪里失败了。似乎正类是正确的(或者至少是合理的),而负类则根本不合理。
那么,第二个解决方案正确吗?有更好的方法吗?
更新3:我想我发现了第一个解决方案的问题:我正在使用 jupyter 笔记本,有时(不是所有时候)当我重新运行第一个解决方案所在的同一单元格时,matrix_mean_positive
和 中的元素矩阵平均负数加倍。如果有人知道为什么,可以指出我吗?
现在两个解决方案返回相同的平均值。
最佳答案
在jupyter笔记本中执行Kernel->Restart以在重新运行之前清理内存
关于python - 仅当满足每行元素的条件时,才计算 2D 数组特定列的均值和方差,我们在Stack Overflow上找到一个类似的问题:
https://stackoverflow.com/questions/52343946/
我想获取每一行某些列的平均值。 我有此数据: w=c(5,6,7,8) x=c(1,2,3,4) y=c(1,2,3) length(y)=4 z=data.frame(w,x,y) 哪个返回:
类似于Numpy mean with condition我的问题将其扩展到对矩阵进行操作:计算矩阵 rdat 的行均值,跳过某些单元格 - 在本例中我使用 0 作为要跳过的单元格 - 就好像这些值从一
我有一个数据集,其中的列标题为产品名称、品牌、评级(1:5)、评论文本、评论有用性。我需要的是提出一个使用评论的推荐算法。我这里必须使用 python 进行编码。数据集采用.csv 格式。 为了识别数
我在 R^3 中有 n 个点,我想用 k 个椭球体或圆柱体覆盖它们(我不在乎;以更容易的为准)。我想大约最小化卷的并集。假设 n 是数万,k 是少数。开发时间(即简单性)比运行时更重要。 显然我可以运
我创建了一个计算均值、中位数和方差的程序。该程序最多接受 500 个输入。当有 500 个输入(我的数组的最大大小)时,我的所有方法都能完美运行。当输入较少时,只有“平均值”计算器起作用。这是整个程序
我已经完成了距离的计算并存储在推力 vector 中,例如,我有 2 个质心和 5 个数据点,我计算距离的方法是,对于每个质心,我首先计算 5 个数据点的距离并存储在阵列,然后与距离一维阵列中的另一个
下面的代码适用于每一列的总数,但我想计算出每个物种的平均值。 # Read data file into array data = numpy.genfromtxt('data/iris.csv',
我有一个独特的要求,我需要两个数据帧的公共(public)列(每行)的平均值。 我想不出这样做的 pythonic 方式。我知道我可以遍历两个数据框并找到公共(public)列,然后获取键匹配的行的平
我把它扔在那里,希望有人会尝试过这种荒谬的事情。我的目标是获取输入图像,并根据每个像素周围小窗口的标准差对其进行分割。基本上,这在数学上应该类似于高斯或盒式过滤器,因为它将应用于编译时(甚至运行时)用
有没有一种方法可以对函数进行向量化处理,使输出成为均值数组,其中每个均值代表输入数组的 0 索引值的均值?循环这个非常简单,但我正在努力尽可能高效。例如0 = 均值(0),1 = 均值(0-1),N
我正在尝试生成均值为 1 的指数分布随机数。我知道如何获取具有均值和标准差的正态分布随机数。我们可以通过normal(mean, standard_deviation)得到它,但是我不知道如何得到指数
我遇到了一段 Python 代码,它的内容类似于以下内容: a = np.array([1,2,3,4,5,6,7]) a array([1, 2, 3, 4, 5, 6, 7]) np.mean(a
我有两个数组。 x 是独立变量,counts 是 x 出现的次数,就像直方图一样。我知道我可以通过定义一个函数来计算平均值: def mean(x,counts): return np.sum
我有在纯 python 中计算平均速度的算法: speed = [...] avg_speed = 0.0 speed_count = 0 for i in speed: if i > 0:
我正在尝试计算扩展窗口的平均值,但是数据结构使得之前的答案至少缺少一点所需的内容(最接近的是:link)。 我的数据看起来像这样: Company TimePeriod IndividualID
我正在尝试实现 Kmeans python中的算法将使用cosine distance而不是欧几里得距离作为距离度量。 我知道使用不同的距离函数可能是致命的,应该小心使用。使用余弦距离作为度量迫使我改
有谁知道自组织映射 (SOM) 与 k 均值相比效果如何?我相信通常在颜色空间(例如 RGB)中,SOM 是将颜色聚类在一起的更好方法,因为视觉上不同的颜色之间的颜色空间存在重叠( http://ww
注意:我希望能得到更多有关如何处理和提出此类解决方案的指南,而不是解决方案本身。 我的系统中有一个非常关键的功能,它在特定上下文中显示为排名第一的分析热点。它处于 k-means 迭代的中间(已经是多
我有一个 pandas 数据框,看起来像这样: 给定行中的每个值要么是相同的数字,要么是 NaN。我想计算数据框中所有两列组合的平均值、中位数和获取计数,其中两列都不是 NaN。 例如,上述数据帧的结
任何人都知道如何调整简单的 K 均值算法来处理 this form 的数据集. 最佳答案 在仍然使用 k-means 的同时处理该形式的数据的最直接方法是使用 k-means 的内核化版本。 JSAT
我是一名优秀的程序员,十分优秀!