gpt4 book ai didi

python - 将 Access 查询转换为 Python 脚本

转载 作者:太空宇宙 更新时间:2023-11-03 21:46:41 27 4
gpt4 key购买 nike

我有一个 Access 查询,我想将其转换为 Python 脚本:

SELECT 
[Functional_Details].Customer_No,
Sum([Functional_Details].[SUM(Incoming_Hours)]) AS [SumOfSUM(Incoming_Hours)],
Sum([Functional_Details].[SUM(Incoming_Minutes)]) AS [SumOfSUM(Incoming_Minutes)],
Sum([Functional_Details].[SUM(Incoming_Seconds)]) AS [SumOfSUM(Incoming_Seconds)],
[Functional_Details].Rate,
[Functional_Details].Customer_Type
FROM [Functional_Details]
WHERE(
(([Functional_Details].User_ID) Not In ("IND"))
AND
(([Functional_Details].Incoming_ID)="Airtel")
AND
(([Functional_Details].Incoming_Category)="Foreign")
AND
(([Functional_Details].Outgoing_ID)="Airtel")
AND
(([Functional_Details].Outgoing_Category)="Foreign")
AND
(([Functional_Details].Current_Operation)="NO")
AND
(([Functional_Details].Active)="NO")
)
GROUP BY [Functional_Details].Customer_No, [Functional_Details].Rate, [Functional_Details].Customer_Type
HAVING ((([Functional_Details].Customer_Type)="Check"));

我将Functional_Details存储在数据框中:df_function_details

我无法理解如何继续处理 python 脚本。

到目前为止我已经尝试过:

df_fd_temp=df_functional_details.copy()

if(df_fd_temp['User_ID'] != 'IND'
and df_fd_temp['Incoming_ID'] == 'Airtel'
and df_fd_temp['Incoming_Category'] == 'Foreign'
and df_fd_temp['Outgoing_ID'] == 'Airtel'
and df_fd_temp['Outgoing_Category'] == 'Foreign'
and df_fd_temp['Current_Operation'] == 'NO'
and df_fd_temp['Active'] == 'NO'):
df_fd_temp.groupby(['Customer_No','Rate','Customer_Type']).groups
df_fd_temp[df_fd_temp['Customer_Type'].str.contains("Check")]

最佳答案

首先,选择条件适用的行(注意括号和 & 而不是 and):

df_fd_temp = df_fd_temp[(df_fd_temp['User_ID'] != 'IND') &
(df_fd_temp['Incoming_ID'] == 'Airtel') &
(df_fd_temp['Incoming_Category'] == 'Foreign') &
(df_fd_temp['Outgoing_ID'] == 'Airtel') &
(df_fd_temp['Outgoing_Category'] == 'Foreign') &
(df_fd_temp['Current_Operation'] == 'NO') &
(df_fd_temp['Active'] == 'NO')]

然后,执行分组逻辑:

 df_grouped = df_fd_temp.groupby(['Customer_No','Rate','Customer_Type'])

您现在拥有一个 groupby 对象,您可以进一步操作和过滤该对象:

df_grouped.filter(lambda x: "Check" in x['Customer_Type'])

您可能需要根据实际数据集的情况调整组过滤。

进一步阅读: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.core.groupby.DataFrameGroupBy.filter.html

关于python - 将 Access 查询转换为 Python 脚本,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52443444/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com