gpt4 book ai didi

python - 打印曲线拟合功能

转载 作者:太空宇宙 更新时间:2023-11-03 21:42:53 25 4
gpt4 key购买 nike

我一直在努力寻找一种方法来获取下面的曲线拟合函数的确定参数并进行打印。该图与我的数据正确匹配,但我不知道如何获得它产生的方程。任何帮助将不胜感激!

import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit

x_data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
y_data = [.99, 1, .98, .93, .85, .77, .67, .56, .46, .36, .27, .19, .12, .07, .03, .01, 0, .01, .05, .09, .16, .24, .33, .44, .55, .65, .76, .85, .93, .98, 1]
x_val = np.array(x_data)
y_val = np.array(y_data)

def fitFunc(x, a, b, c, d):
return a * np.sin((2* np.pi / b) * x - c) + d
print(a, b, c, d)

plt.plot(x_val, y_val, marker='.', markersize=0, linewidth='0.5', color='green')
popt, pcov = curve_fit(fitFunc, x_val, y_val)
plt.plot(x_val, fitFunc(x_val, *popt), color='orange', linestyle='--')

最佳答案

这是一个使用您的数据的图形示例,请注意方程式。此示例使用根据数据散点图手动估计的初始参数估计值,默认 curve_fit 估计值默认均为 1.0,在这种情况下效果不佳。

import numpy as np
import scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

xData = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0])
yData = np.array([.99, 1.0, 0.98, 0.93, 0.85, 0.77, 0.67, 0.56, 0.46, 0.36, 0.27, 0.19, 0.12, 0.07, 0.03, 0.01, 0, 0.01, 0.05, 0.09, 0.16, 0.24, 0.33, 0.44, 0.55, 0.65, 0.76, 0.85, 0.93, 0.98, 1.0])


def fitFunc(x, amplitude, center, width, offset):
return amplitude * np.sin(np.pi * (x - center) / width) + offset

# these are the curve_fit default parameter estimates, and
# do not work well for this data and equation - manually estimate below
#initialParameters = np.array([1.0, 1.0, 1.0, 1.0])

# eyeball the scatterplot for some better, simple, initial parameter estimates
initialParameters = np.array([0.5, 1.0, 16.0, 0.5])

# curve fit the test data using initial parameters
fittedParameters, pcov = curve_fit(fitFunc, xData, yData, initialParameters)
print(fittedParameters)

modelPredictions = fitFunc(xData, *fittedParameters)

absError = modelPredictions - yData

SE = np.square(absError) # squared errors
MSE = np.mean(SE) # mean squared errors
RMSE = np.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (np.var(absError) / np.var(yData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)

# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')

# create data for the fitted equation plot
xModel = np.linspace(min(xData), max(xData))
yModel = fitFunc(xModel, *fittedParameters)

# now the model as a line plot
axes.plot(xModel, yModel)

axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label

plt.show()
plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)

关于python - 打印曲线拟合功能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52712821/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com