gpt4 book ai didi

python - 为什么 groupby.diff 这么慢?

转载 作者:太空宇宙 更新时间:2023-11-03 21:37:28 24 4
gpt4 key购买 nike

我想计算每个组的系列差异,如下例所示:

In [24]: rnd_ser = pd.Series(np.random.randn(5000))
...: com_ser = pd.concat([rnd_ser] * 500, keys=np.arange(500), names=['Date', 'ID'])

In [25]: d1 = com_ser.groupby("Date").diff()

In [26]: d2 = com_ser - com_ser.groupby("Date").shift()

In [27]: np.allclose(d1.fillna(0), d2.fillna(0))
Out[27]: True

有两种方法可以解决这个问题,但是第一种方法性能较差:

In [30]: %timeit d1 = com_ser.groupby("Date").diff()
616 ms ± 5.62 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [31]: %timeit d2 = com_ser - com_ser.groupby("Date").shift()
95 ms ± 326 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

这是预期的还是错误?

我的环境的详细信息:

In [23]: pd.show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 3.7.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.23.4
pytest: 3.9.3
pip: 18.1
setuptools: 40.5.0
Cython: 0.29
numpy: 1.15.3
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.1.1
sphinx: 1.8.1
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.8
feather: None
matplotlib: 3.0.1
openpyxl: 2.5.9
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.1.2
lxml: 4.2.5
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.12
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

最佳答案

FWIW,我在我的机器上看到类似的数字

%timeit d1 = com_ser.groupby("Date").diff()
523 ms ± 32.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit d2 = com_ser - com_ser.groupby("Date").shift()
80.8 ms ± 2.31 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Pandas 的 diff() 实现对于 groupby() 来说似乎很慢

例如,如果我制作一个大系列

big_ser = pd.Series(np.random.randn(int(1e7)))

然后将移位和减法与 Series.diff()

进行比较
%timeit big_ser - big_ser.shift()
46.3 ms ± 789 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit big_ser.diff()
41.6 ms ± 488 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

那么实现之间的时间是相同的。接下来,当您查看 Series.diff 的内部源代码时,它在注释中明确指出

def diff(arr, n, axis=0):
"""
difference of n between self,
analogous to s-s.shift(n)

所以我认为它必须是特定于 diff()groupby 中的一些开销

关于python - 为什么 groupby.diff 这么慢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53150700/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com