- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我是 Python、Pandas、Dash 等的新手。我正在尝试构建一个数据框,以便我可以创建一些用于绘图的破折号组件,以允许用户查看和过滤数据。
顶部是聚合特征,前 3 个是必需的,其余的根据是否针对该特征聚合数据而稀疏。第一个省略号之后是当天的一些汇总特征,第二个省略号之后是用于聚合的时间序列数据。本例中大约有 3800 个预先计算的聚合分组。
我应该尝试将聚合特征放入多索引中吗?
runid 是创建输出的分析运行的标识符(所有 3818 列的编号相同),而 UID 字段对于单次运行的每一列应该是唯一的,但多个运行将具有相同的 UID,但不同的RUNID。 UID 是 RUNID 和 AGGLEVEL 的 CHAR1 到 CHAR20 的唯一组合。 AGGLEVEL 是分析分组,可能具有一列或多列输出。 CHAR3_CHAR6_UNADJ 是 CHAR3 和 CHAR6 的独特组合,因此填充这两行,而其余 CHAR 行为空(以及 NaN) 我当前的示例只是一次运行,但有数万次运行,尽管我通常专注于一次运行一次可能不会处理超过 10-20 个数据的子集。仅当该列具有按该特征聚合的数据时,才会填充 Char1 到 Char20。
我的数据框示例:
print(dft)
0 ... 3818
UID 32 ... 19980
RUNID 1234 ... 1234
AGGLEVEL CHAR12_ADJ ... CHAR3_CHAR6_UNADJ
CHAR1 NaN ... NaN
CHAR2 NaN ... NaN
CHAR3 NaN ... 1234
CHAR4 NaN ... NaN
CHAR5 NaN ... NaN
CHAR6 NaN ... ABCD
CHAR7 NaN ... NaN
CHAR8 NaN ... NaN
CHAR9 NaN ... NaN
CHAR10 NaN ... NaN
CHAR11 NaN ... NaN
CHAR12 IJKL ... NaN
CHAR13 NaN ... NaN
CHAR14 NaN ... NaN
CHAR15 NaN ... NaN
CHAR16 NaN ... NaN
CHAR17 NaN ... NaN
CHAR18 NaN ... NaN
CHAR19 NaN ... NaN
CHAR20 NaN ... NaN
...
STARTTIME 2018-08-22 00:00:00 ... 2018-08-22 00:00:00
MAXIMUM 2.676 ... 0.654993
MINIMUM 0.8868 ... 0.258181
...
00:00 1.2288 ... 0.335217
01:00 1.2828 ... 0.337848
02:00 1.2876 ... 0.324639
03:00 1.194 ... 0.314569
04:00 1.2876 ... 0.258181
05:00 1.1256 ... 0.284699
06:00 1.4016 ... 0.364655
07:00 1.122 ... 0.388968
08:00 1.0188 ... 0.452711
09:00 1.008 ... 0.507032
10:00 1.0272 ... 0.546807
11:00 0.972 ... 0.605359
12:00 1.062 ... 0.641152
13:00 0.8868 ... 0.625082
14:00 1.1076 ... 0.623865
15:00 0.9528 ... 0.654993
16:00 1.014 ... 0.645511
17:00 2.676 ... 0.62638
18:00 0.9888 ... 0.551629
19:00 1.038 ... 0.518322
20:00 1.2528 ... 0.50793
21:00 1.08 ... 0.456993
22:00 1.1724 ... 0.387063
23:00 1.1736 ... 0.345045
[62 rows x 3819 columns]
最佳答案
您应该尝试使用dft.T
转置它。您将使用从 0 到 3818 之间的样本编号作为索引,然后使用 dft['STARTTIME']
等示例,可以更轻松地选择列。
对于 NaN,您应该执行 dft = dft.replace('NaN',np.nan)
这样 Pandas 就会明白它实际上是一个 NaN 而不是字符串(不要忘记写 之前将numpy导入为np
)。然后,您将能够使用 pd.isna(dft)
检查 Dataframe 中是否有 NaN 或 dft.dropna()
来保留完整的完成行。
关于python - Pandas Dataframe 多索引,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53227509/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!