- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
返回与 Spark RDD 中每个唯一键关联的最大行(值)的最佳方法是什么?
我正在使用 python,并且尝试了 Math max、通过键和聚合进行映射和减少。有没有有效的方法来做到这一点?可能是 UDF?
我有 RDD 格式:
[(v, 3),
(v, 1),
(v, 1),
(w, 7),
(w, 1),
(x, 3),
(y, 1),
(y, 1),
(y, 2),
(y, 3)]
我需要返回:
[(v, 3),
(w, 7),
(x, 3),
(y, 3)]
关系可以返回第一个值或随机值。
最佳答案
实际上你有一个PairRDD。最好的方法之一是使用reduceByKey:
(斯卡拉)
val grouped = rdd.reduceByKey(math.max(_, _))
(Python)
grouped = rdd.reduceByKey(max)
(Java 7)
JavaPairRDD<String, Integer> grouped = new JavaPairRDD(rdd).reduceByKey(
new Function2<Integer, Integer, Integer>() {
public Integer call(Integer v1, Integer v2) {
return Math.max(v1, v2);
}
});
(Java 8)
JavaPairRDD<String, Integer> grouped = new JavaPairRDD(rdd).reduceByKey(
(v1, v2) -> Math.max(v1, v2)
);
reduceByKey 的 API 文档:
关于python - 获取 Spark RDD 中每个键的最大值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53328704/
我是 Pyspark 新手,我使用的是 Spark 2.0.2。 我有一个名为 Test_RDD 的 RDD,其结构如下: U-Key || V1 || V2 || V3 || ----
我正在寻找一种方法将一个 RDD 拆分为两个或多个 RDD,并将获得的结果保存为两个单独的 RDD。例如: rdd_test = sc.parallelize(range(50), 1) 我的代码:
我有一个结构如下的RDD: ((user_id,item_id,rating)) 让我们将此 RDD 称为训练 然后还有另一个具有相同结构的rdd: ((user_id,item_id,rating)
已经有人问过类似的问题。最相似的是这个: Spark: How to split an RDD[T]` into Seq[RDD[T]] and preserve the ordering 但是,我不
我正在使用 spark 来处理数据。但是我不知道如何将新数据保存到Hive 我从 Hive 加载 rdd,然后运行 map 函数来清理数据。 result = myRdd.map(lambda x
我有一个名为 index 的 rdd:RDD[(String, String)],我想用 index 来处理我的文件。 这是代码: val get = file.map({x => val tmp
我有两个 RDD: **rdd1** id1 val1 id2 val2 **rdd2** id1 v1 id2 v2 id1 v3 id8 v7 id1 v4 id3 v5 id6 v6 我想过滤
我有一个 RDD,需要从另一个 RDD 访问数据。但是,我总是收到任务不可序列化错误。我已经扩展了 Serialized 类,但它没有起作用。代码是: val oldError = rddOfRati
我有一个 RDD,需要从另一个 RDD 访问数据。但是,我总是收到任务不可序列化错误。我已经扩展了 Serialized 类,但它没有起作用。代码是: val oldError = rddOfRati
我有一个 RDD 对: (105,918) (105,757) (502,516) (105,137) (516,816) (350,502) 我想将它分成两个 RDD,这样第一个只有具有非重复值的对
我正在尝试使用 spark 执行 K 最近邻搜索。 我有一个 RDD[Seq[Double]] 并且我打算返回一个 RDD[(Seq[Double],Seq[Seq[Double]])] 带有实际行和
我是Spark和Scala语言的新手,并且希望将所有RDD合并到一个List中,如下所示(List to RDD): val data = for (item {
我找不到只参与 rdd 的方法. take看起来很有希望,但它返回 list而不是 rdd .我当然可以将其转换为 rdd ,但这似乎既浪费又丑陋。 my_rdd = sc.textFile("my
我正在寻找一种将 RDD 拆分为两个或更多 RDD 的方法。我见过的最接近的是 Scala Spark: Split collection into several RDD?这仍然是一个单一的 RDD
我有一个RDD[String],wordRDD。我还有一个从字符串/单词创建 RDD[String] 的函数。我想为 wordRDD 中的每个字符串创建一个新的 RDD。以下是我的尝试: 1) 失败,
我刚刚开始使用 Spark 和 Scala 我有一个包含多个文件的目录我使用 成功加载它们 sc.wholeTextFiles(directory) 现在我想升一级。我实际上有一个目录,其中包含包含文
我想从另一个 RDD 中减去一个 RDD。我查看了文档,发现 subtract可以这样做。实际上,当我测试时 subtract , 最终的 RDD 保持不变,值不会被删除! 有没有其他功能可以做到这一
我在 HDFS 中有如下三个文件中的数据 EmployeeManagers.txt (EmpID,ManagerID) 1,5 2,4 3,4 4,6 5,6 EmployeeNames.txt (E
我正在开发一个应用程序,我需要对 RDD 中具有相同键的每对行执行计算,这是 RDD 结构: List>> dat2 = new ArrayList<>(); dat2.add(new Tuple2>
我在 spark 集群中有两个文件,foo.csv 和 bar.csv,它们都有 4 列和完全相同的字段:时间、用户、url、类别。 我想通过 bar.csv 的某些列过滤掉 foo.csv。最后,我
我是一名优秀的程序员,十分优秀!