- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在 Stack Overflow 上查找了相关问题的解决方案,但似乎这个解决方案相当独特。就上下文而言,由于公司程序,我需要每小时刷新一次 AWS 安全凭证,并且我正在努力将新刷新的安全凭证添加到 Spark。在第一个小时内一切正常(我可以访问和读取 s3 等中的表),但在第一个小时结束并且刷新凭证后我无法成功更改我的 aws 凭证。
刷新我的 aws 凭证后,以下是我用来更新 Spark 以使它们使用新的 aws 凭证的代码:
sc = spark.sparkContext
def getAWSKeys(profile):
awsCreds = {}
Config = ConfigParser.ConfigParser()
Config.read(os.path.join(os.getenv("HOME"), '.aws', 'credentials'))
if profile in Config.sections():
awsCreds["aws_access_key_id"] = Config.get(
profile, "aws_access_key_id")
awsCreds["aws_secret_access_key"] = Config.get(
profile, "aws_secret_access_key")
awsCreds["aws_session_token"] = Config.get(
profile, "aws_session_token")
return awsCreds
awsKeys = getAWSKeys(profile)
sc._jsc.hadoopConfiguration().set("fs.s3.awsAccessKeyId",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3.awsSecretAccessKey",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3.session.token",
awsKeys["aws_session_token"])
sc._jsc.hadoopConfiguration().set("fs.s3.enableServerSideEncryption", "true")
sc._jsc.hadoopConfiguration().set("fs.s3.access.key",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3.secret.key",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3.endpoint",
"s3.us-east-1.amazonaws.com")
sc._jsc.hadoopConfiguration().set("fs.s3a.awsAccessKeyId",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3a.awsSecretAccessKey",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3a.session.token",
awsKeys["aws_session_token"])
sc._jsc.hadoopConfiguration().set("fs.s3a.enableServerSideEncryption", "true")
sc._jsc.hadoopConfiguration().set("fs.s3a.access.key",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3a.secret.key",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3a.endpoint",
"s3.us-east-1.amazonaws.com")
sc._jsc.hadoopConfiguration().set("fs.s3n.awsAccessKeyId",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3n.awsSecretAccessKey",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3n.session.token",
awsKeys["aws_session_token"])
sc._jsc.hadoopConfiguration().set("fs.s3n.enableServerSideEncryption", "true")
sc._jsc.hadoopConfiguration().set("fs.s3n.access.key",
awsKeys["aws_access_key_id"])
sc._jsc.hadoopConfiguration().set("fs.s3n.secret.key",
awsKeys["aws_secret_access_key"])
sc._jsc.hadoopConfiguration().set("fs.s3n.endpoint",
"s3.us-east-1.amazonaws.com")
sc.setSystemProperty("com.amazonaws.services.s3.enableV4", "true")
sc.setSystemProperty("com.amazonaws.services.s3n.enableV4", "true")
sc.setSystemProperty("com.amazonaws.services.s3a.enableV4", "true")
# sc._jsc.hadoopConfiguration().set("fs.s3.aws.credentials.provider",
# "org.apache.hadoop.fs.s3.TemporaryAWSCredentialsProvider")
os.environ['AWS_ACCESS_KEY_ID'] = awsKeys["aws_access_key_id"]
os.environ['AWS_SECRET_ACCESS_KEY'] = awsKeys["aws_secret_access_key"]
os.environ['AWS_SESSION_TOKEN'] = awsKeys["aws_session_token"]
我试图在我的方法中做到详尽无遗,但遗憾的是没有任何效果。我得到的错误是:
Py4JJavaError Traceback (most recent call last)
<ipython-input-57-674174eca978> in <module>()
3 table = (
4 spark.read.option("delimiter", "|")
----> 5 .csv(f"s3n://{s3_path}/{file1}", header = True, inferSchema=True)
6 .select("col1", "col2", "col3", "col4")
7 )
/usr/lib/spark/python/pyspark/sql/readwriter.py in csv(self, path, schema, sep, encoding, quote, escape, comment, header, inferSchema, ignoreLeadingWhiteSpace, ignoreTrailingWhiteSpace, nullValue, nanValue, positiveInf, negativeInf, dateFormat, timestampFormat, maxColumns, maxCharsPerColumn, maxMalformedLogPerPartition, mode, columnNameOfCorruptRecord, multiLine)
408 if isinstance(path, basestring):
409 path = [path]
--> 410 return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path)))
411
412 @since(1.5)
/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
Py4JJavaError: An error occurred while calling o12923.csv.
: com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.model.AmazonS3Exception: Bad Request (Service: Amazon S3; Status Code: 400; Error Code: 400 Bad Request; Request ID: 9A4F6DDEA3BD8AA6), S3 Extended Request ID: xg9ZiPjfV3h4rGgs5emsUiWl8xQdv0OMhK/91qdAs/iIvapWgIlWh9m1qLTGj3ODFM9MtEnuueg=
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.handleErrorResponse(AmazonHttpClient.java:1588)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1258)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1030)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:742)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:716)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:699)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:667)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:649)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:513)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4169)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:4116)
at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.getObjectMetadata(AmazonS3Client.java:1237)
at com.amazon.ws.emr.hadoop.fs.s3.lite.call.GetObjectMetadataCall.perform(GetObjectMetadataCall.java:24)
at com.amazon.ws.emr.hadoop.fs.s3.lite.call.GetObjectMetadataCall.perform(GetObjectMetadataCall.java:10)
at com.amazon.ws.emr.hadoop.fs.s3.lite.executor.GlobalS3Executor.execute(GlobalS3Executor.java:82)
at com.amazon.ws.emr.hadoop.fs.s3.lite.AmazonS3LiteClient.invoke(AmazonS3LiteClient.java:176)
at com.amazon.ws.emr.hadoop.fs.s3.lite.AmazonS3LiteClient.getObjectMetadata(AmazonS3LiteClient.java:94)
at com.amazon.ws.emr.hadoop.fs.s3.lite.AbstractAmazonS3Lite.getObjectMetadata(AbstractAmazonS3Lite.java:39)
at com.amazon.ws.emr.hadoop.fs.s3n.Jets3tNativeFileSystemStore.retrieveMetadata(Jets3tNativeFileSystemStore.java:211)
at sun.reflect.GeneratedMethodAccessor42.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy36.retrieveMetadata(Unknown Source)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.getFileStatus(S3NativeFileSystem.java:768)
at org.apache.hadoop.fs.FileSystem.exists(FileSystem.java:1430)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.exists(EmrFileSystem.java:311)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:359)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:348)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:344)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:348)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:178)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:533)
at sun.reflect.GeneratedMethodAccessor118.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
重申一下,第一个小时内一切正常,但当我刷新 aws 凭证时,我收到 400 Bad Request 错误。我尝试将这些新的 aws 凭证添加到 Spark,但我尝试过的任何方法都不起作用。
最佳答案
最近偶然发现了这个;在深入研究 hadoop-aws java 代码后,发现:
fs.<scheme>.impl.disable.cache
(在我们的例子中, scheme=s3a
)禁用此缓存;这将每次实例化一个新的凭据提供程序,但至少您可以使用新凭据创建一个凭据提供程序关于python - Spark 上下文初始化后,在运行时期间更改 pyspark 的 hadoop 配置中的 aws 凭证,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53398881/
我们有数据(此时未分配)要转换/聚合/透视到 wazoo。 我在 www 上看了看,我问的所有答案都指向 hadoop 可扩展、运行便宜(没有 SQL 服务器机器和许可证)、快速(如果你有足够的数据)
这很明显,我们都同意我们可以将 HDFS + YARN + MapReduce 称为 Hadoop。但是,Hadoop 生态系统中的其他不同组合和其他产品会怎样? 例如,HDFS + YARN + S
如果 es-hadoop 只是连接到 HDFS 的 Hadoop 连接器,它如何支持 Hadoop 分析? 最佳答案 我假设您指的是 this project .在这种情况下,ES Hadoop 项目
看完this和 this论文,我决定我想在 MapReduce 上为大型数据集实现分布式体积渲染设置作为我的本科论文工作。 Hadoop 是一个合理的选择吗? Java 不会扼杀一些性能提升或使与 C
我一直在尝试查找有关如何通过命令行提交 hadoop 作业的信息。 我知道命令 - hadoop jar jar-file 主类输入输出 还有另一个命令,我正在尝试查找有关它的信息,但未能找到 - h
Hadoop 服务器在 Kubernetes 中。而Hadoop客户端位于外网。所以我尝试使用 kubernetes-service 来使用 Hadoop 服务器。但是 hadoop fs -put
有没有人遇到奇怪的环境问题,在调用 hadoop 命令时被迫使用 SU 而不是 SUDO? sudo su -c 'hadoop fs -ls /' hdfs Found 4 itemsdrwxr-x
在更改 mapred-site.xml 中的属性后,我给出了一个 tar.bz2 文件、.gz 和 tar.gz 文件作为输入。以上似乎都没有奏效。我假设这里发生的是 hadoop 作为输入读取的记录
如何在 Hadoop Pipes 中获取正在 hadoop 映射器 中执行的输入文件 名称? 我可以很容易地在基于 java 的 map reducer 中获取文件名,比如 FileSplit fil
我想使用 MapReduce 方法分析连续的数据流(通过 HTTP 访问),因此我一直在研究 Apache Hadoop。不幸的是,Hadoop 似乎期望以固定大小的输入文件开始作业,而不是能够在新数
名称节点可以执行任务吗?默认情况下,任务在集群的数据节点上执行。 最佳答案 假设您正在询问MapReduce ... 使用YARN,MapReduce任务在应用程序主数据库中执行,而不是在nameno
我有一个关系A包含 (zip-code). 我还有另一个关系B包含 (name:gender:zip-code) (x:m:1234) (y:f:1234) (z:m:1245) (s:f:1235)
我是hadoop地区的新手。您能帮我负责(k2,list[v2,v2,v2...])形式的输出(意味着将键及其所有关联值组合在一起)的责任是吗? 谢谢。 最佳答案 这是Hadoop的MapReduce
因此,我一直在尝试编写一个hadoop程序,该程序将输入作为一个包含许多文件的文件,并且我希望hadoop程序的输出仅是输入文件的一行。但是我还没有做到这一点。我也不想去 reducer 课。如果有人
我使用的输入文本文件的内容是 1 "Come 1 "Defects," 1 "I 1 "Information 1 "J" 2 "Plain 5 "Project 1
谁能告诉我以下grep命令的作用: $ bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+' 最佳答案 http:/
我不了解mapreducer的基本功能,mapreducer是否有助于将文件放入HDFS 或mapreducer仅有助于分析HDFS中现有文件中的内容 我对hadoop非常陌生,任何人都可以指导我理解
CopyFromLocal将从本地文件系统上载数据。 不要放会从任何文件上传数据,例如。本地FS,亚马逊S3 或仅来自本地fs ??? 最佳答案 请找到两个命令的用法。 put ======= Usa
我开始研究hadoop mapreduce。 我是Java和hadoop的初学者,并且了解hadoop mapreduce的编码,但是有兴趣了解它在云中的内部工作方式。 您能否分享一些很好的链接来说明
我一直在寻找Hadoop mapreduce类的类路径。我正在使用Hortonworks 2.2.4版沙箱。我需要这样的类路径来运行我的javac编译器: javac -cp (CLASS_PATH)
我是一名优秀的程序员,十分优秀!