gpt4 book ai didi

matlab - DescriptorMatcher mexopencv 中 imgIdx 的问题

转载 作者:太空宇宙 更新时间:2023-11-03 21:27:45 25 4
gpt4 key购买 nike

我的想法很简单。我正在使用 mexopencv 并试图查看我的电流中是否存在与我数据库中存储的任何图像匹配的任何对象。我正在使用 OpenCV DescriptorMatcher 函数来训练我的图片。这是一个片段,我希望在 this 之上构建,这是使用mexopencv进行的一对一图像匹配,也可以扩展为图像流。

function hello

detector = cv.FeatureDetector('ORB');
extractor = cv.DescriptorExtractor('ORB');
matcher = cv.DescriptorMatcher('BruteForce-Hamming');

train = [];
for i=1:3
train(i).img = [];
train(i).points = [];
train(i).features = [];
end;

train(1).img = imread('D:\test\1.jpg');
train(2).img = imread('D:\test\2.png');
train(3).img = imread('D:\test\3.jpg');


for i=1:3

frameImage = train(i).img;
framePoints = detector.detect(frameImage);
frameFeatures = extractor.compute(frameImage , framePoints);

train(i).points = framePoints;
train(i).features = frameFeatures;

end;

for i = 1:3
boxfeatures = train(i).features;
matcher.add(boxfeatures);
end;
matcher.train();

camera = cv.VideoCapture;
pause(3);%Sometimes necessary

window = figure('KeyPressFcn',@(obj,evt)setappdata(obj,'flag',true));
setappdata(window,'flag',false);

while(true)

sceneImage = camera.read;
sceneImage = rgb2gray(sceneImage);

scenePoints = detector.detect(sceneImage);
sceneFeatures = extractor.compute(sceneImage,scenePoints);

m = matcher.match(sceneFeatures);

%{
%Comments in
img_no = m.imgIdx;
img_no = img_no(1);

%I am planning to do this based on the fact that
%on a perfect match imgIdx a 1xN will be filled
%with the index of the training
%example 1,2 or 3

objPoints = train(img_no+1).points;
boxImage = train(img_no+1).img;

ptsScene = cat(1,scenePoints([m.queryIdx]+1).pt);
ptsScene = num2cell(ptsScene,2);

ptsObj = cat(1,objPoints([m.trainIdx]+1).pt);
ptsObj = num2cell(ptsObj,2);

%This is where the problem starts here, assuming the
%above is correct , Matlab yells this at me
%index exceeds matrix dimensions.

end [H,inliers] = cv.findHomography(ptsScene,ptsObj,'Method','Ransac');
m = m(inliers);

imgMatches = cv.drawMatches(sceneImage,scenePoints,boxImage,boxPoints,m,...
'NotDrawSinglePoints',true);
imshow(imgMatches);

%Comment out
%}

flag = getappdata(window,'flag');
if isempty(flag) || flag, break; end
pause(0.0001);

end

现在这里的问题是 imgIdx 是一个 1xN 矩阵 ,它包含了不同训练指标的索引,这是显而易见的。只有在完美匹配的情况下,矩阵 imgIdx 才会完全填充匹配的图像索引。 那么,我该如何使用这个矩阵来选择正确的图像索引。还在这两行中,我得到索引超出矩阵维度的错误。

ptsObj = cat(1,objPoints([m.trainIdx]+1).pt);
ptsObj = num2cell(ptsObj,2);

这是显而易见的,因为在调试时我清楚地看到 m.trainIdx 的大小大于 objPoints,即我正在访问我不应该访问的点,因此索引超过关于 imgIdx 的使用的文档很少,所以任何了解这个主题的人,我都需要帮助。这些是我使用的图像。

Image1

Image1

Image2

Image2

Image3

Image3

@Amro 回复后的第一次更新:

With the ratio of min distance to distance at 3.6 , I get the following response.

For 3.6

With the ratio of min distance to distance at 1.6 , I get the following response.

For 1.6

最佳答案

我觉得用代码解释起来更容易,所以就这样:)

%% init
detector = cv.FeatureDetector('ORB');
extractor = cv.DescriptorExtractor('ORB');
matcher = cv.DescriptorMatcher('BruteForce-Hamming');

urls = {
'http://i.imgur.com/8Pz4M9q.jpg?1'
'http://i.imgur.com/1aZj0MI.png?1'
'http://i.imgur.com/pYepuzd.jpg?1'
};

N = numel(urls);
train = struct('img',cell(N,1), 'pts',cell(N,1), 'feat',cell(N,1));

%% training
for i=1:N
% read image
train(i).img = imread(urls{i});
if ~ismatrix(train(i).img)
train(i).img = rgb2gray(train(i).img);
end

% extract keypoints and compute features
train(i).pts = detector.detect(train(i).img);
train(i).feat = extractor.compute(train(i).img, train(i).pts);

% add to training set to match against
matcher.add(train(i).feat);
end
% build index
matcher.train();

%% testing
% lets create a distorted query image from one of the training images
% (rotation+shear transformations)
t = -pi/3; % -60 degrees angle
tform = [cos(t) -sin(t) 0; 0.5*sin(t) cos(t) 0; 0 0 1];
img = imwarp(train(3).img, affine2d(tform)); % try all three images here!

% detect fetures in query image
pts = detector.detect(img);
feat = extractor.compute(img, pts);

% match against training images
m = matcher.match(feat);

% keep only good matches
%hist([m.distance])
m = m([m.distance] < 3.6*min([m.distance]));

% sort by distances, and keep at most the first/best 200 matches
[~,ord] = sort([m.distance]);
m = m(ord);
m = m(1:min(200,numel(m)));

% naive classification (majority vote)
tabulate([m.imgIdx]) % how many matches each training image received
idx = mode([m.imgIdx]);

% matches with keypoints belonging to chosen training image
mm = m([m.imgIdx] == idx);

% estimate homography (used to locate object in query image)
ptsQuery = num2cell(cat(1, pts([mm.queryIdx]+1).pt), 2);
ptsTrain = num2cell(cat(1, train(idx+1).pts([mm.trainIdx]+1).pt), 2);
[H,inliers] = cv.findHomography(ptsTrain, ptsQuery, 'Method','Ransac');

% show final matches
imgMatches = cv.drawMatches(img, pts, ...
train(idx+1).img, train(idx+1).pts, ...
mm(logical(inliers)), 'NotDrawSinglePoints',true);

% apply the homography to the corner points of the training image
[h,w] = size(train(idx+1).img);
corners = permute([0 0; w 0; w h; 0 h], [3 1 2]);
p = cv.perspectiveTransform(corners, H);
p = permute(p, [2 3 1]);

% show where the training object is located in the query image
opts = {'Color',[0 255 0], 'Thickness',4};
imgMatches = cv.line(imgMatches, p(1,:), p(2,:), opts{:});
imgMatches = cv.line(imgMatches, p(2,:), p(3,:), opts{:});
imgMatches = cv.line(imgMatches, p(3,:), p(4,:), opts{:});
imgMatches = cv.line(imgMatches, p(4,:), p(1,:), opts{:});
imshow(imgMatches)

结果:

object_detection

请注意,由于您没有发布任何测试图像(在您的代码中,您正在从网络摄像头获取输入),我通过扭曲训练图像并将其用作查询图像来创建一个。我正在使用某些 MATLAB 工具箱中的函数(imwarp 等),但这些对于演示来说不是必需的,您可以将它们替换为等效的 OpenCV 工具箱...

我必须说这种方法不是最可靠的方法。考虑使用其他技术,例如 bag-of-word model , OpenCV 已经 implements .

关于matlab - DescriptorMatcher mexopencv 中 imgIdx 的问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20717025/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com