- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有包含两列的 csv 文件:
category, description
文件中有 1030 个类别,只有大约 12,600 行
我需要获得一个文本分类模型,并根据这些数据进行训练。我使用 keras 和 LSTM 模型。
我找到了一篇描述如何进行二元分类的文章,并对其进行了稍微修改以使用多个类别。
我的代码:
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Embedding, LSTM
from numpy import array
from keras.preprocessing.text import one_hot
from sklearn.preprocessing import LabelEncoder
from keras.preprocessing import sequence
import keras
df = pd.read_csv('/tmp/input_data.csv')
#one hot encode your documents
# integer encode the documents
vocab_size = 2000
encoded_docs = [one_hot(d, vocab_size) for d in df['description']]
def load_data_from_arrays(strings, labels, train_test_split=0.9):
data_size = len(strings)
test_size = int(data_size - round(data_size * train_test_split))
print("Test size: {}".format(test_size))
print("\nTraining set:")
x_train = strings[test_size:]
print("\t - x_train: {}".format(len(x_train)))
y_train = labels[test_size:]
print("\t - y_train: {}".format(len(y_train)))
print("\nTesting set:")
x_test = strings[:test_size]
print("\t - x_test: {}".format(len(x_test)))
y_test = labels[:test_size]
print("\t - y_test: {}".format(len(y_test)))
return x_train, y_train, x_test, y_test
encoder = LabelEncoder()
categories = encoder.fit_transform(df['category'])
num_classes = np.max(categories) + 1
print('Categories count: {}'.format(num_classes))
#Categories count: 1030
X_train, y_train, x_test, y_test = load_data_from_arrays(encoded_docs, categories, train_test_split=0.8)
# Truncate and pad the review sequences
max_review_length = 500
X_train = sequence.pad_sequences(X_train, maxlen=max_review_length)
x_test = sequence.pad_sequences(x_test, maxlen=max_review_length)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('y_train shape:', y_train.shape)
print('y_test shape:', y_test.shape)
# Build the model
embedding_vector_length = 32
top_words = 10000
model = Sequential()
model.add(Embedding(top_words, embedding_vector_length, input_length=max_review_length))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy'])
print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_8 (Embedding) (None, 500, 32) 320000
_________________________________________________________________
lstm_8 (LSTM) (None, 100) 53200
_________________________________________________________________
dense_8 (Dense) (None, 1030) 104030
=================================================================
Total params: 477,230
Trainable params: 477,230
Non-trainable params: 0
_________________________________________________________________
None
#Train the model
model.fit(X_train, y_train, validation_data=(x_test, y_test), epochs=5, batch_size=64)
Train on 10118 samples, validate on 2530 samples
Epoch 1/5
10118/10118 [==============================] - 60s 6ms/step - loss: 6.5086 - acc: 0.0019 - val_loss: 10.0911 - val_acc: 0.0000e+00
Epoch 2/5
10118/10118 [==============================] - 63s 6ms/step - loss: 6.3281 - acc: 0.0028 - val_loss: 10.8270 - val_acc: 0.0000e+00
Epoch 3/5
10118/10118 [==============================] - 63s 6ms/step - loss: 6.3120 - acc: 0.0024 - val_loss: 11.0078 - val_acc: 0.0000e+00
Epoch 4/5
10118/10118 [==============================] - 64s 6ms/step - loss: 6.2891 - acc: 0.0030 - val_loss: 11.8264 - val_acc: 0.0000e+00
Epoch 5/5
10118/10118 [==============================] - 69s 7ms/step - loss: 6.2559 - acc: 0.0032 - val_loss: 12.1625 - val_acc: 0.0000e+00
#Evaluate the model
scores = model.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
Accuracy: 0.00%
我在准备数据时犯了什么错误?为什么准确率总是0?
最佳答案
我用我自己的一些输入策划了端到端代码,并在 this 上进行了测试。数据,您可以对您的数据使用相同的内容,无需进行任何更改或进行很少的更改,因为我已经删除了细节并使其通用。最后,我还强调了我在您上面提供的代码之上所做的工作。
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import one_hot
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Flatten, Dense
from nltk.tokenize import word_tokenize
def load_data_from_arrays(strings, labels, train_test_split=0.9):
data_size = len(strings)
test_size = int(data_size - round(data_size * train_test_split))
print("Test size: {}".format(test_size))
print("\nTraining set:")
x_train = strings[test_size:]
print("\t - x_train: {}".format(len(x_train)))
y_train = labels[test_size:]
print("\t - y_train: {}".format(len(y_train)))
print("\nTesting set:")
x_test = strings[:test_size]
print("\t - x_test: {}".format(len(x_test)))
y_test = labels[:test_size]
print("\t - y_test: {}".format(len(y_test)))
return x_train, y_train, x_test, y_test
# estimating the vocab length with the help of nltk
def get_vocab_length(strings):
vocab = []
for sent in strings:
words = word_tokenize(sent)
vocab.extend(words)
vocab = list(set(vocab))
vocab_length = len(vocab)
return vocab_length
def clean_text(sent):
# <your cleaning code here>
# clean func 1
# clean func 2
# ...
# clean func n
return sent
# load input data
df = pd.read_csv('/tmp/input_data.csv')
strings = df['description'].values
labels = df['category'].values
clean_strings = [clean_text(sent) for sent in strings]
vocab_length = get_vocab_length(clean_strings)
# create onehot encodings of strings
encoded_docs = [one_hot(sent, vocab_length) for sent in strings]
# create onehot encodings of labels
ohe = OneHotEncoder()
categories = ohe.fit_transform(labels.reshape(-1,1)).toarray()
# split data
X_train, y_train, X_test, y_test = load_data_from_arrays(encoded_docs, categories, train_test_split=0.8)
# assuming max input to be not more than 512 words
max_input_len = 512
# padding data
X_train = pad_sequences(X_train, maxlen=max_input_len, padding= 'post')
X_test = pad_sequences(X_test, maxlen=max_input_len, padding= 'post')
# setting embedding vector length
embedding_vector_length = 32
model = Sequential()
model.add(Embedding(vocab_length, embedding_vector_length, input_length=max_input_len, name= 'embedding') )
model.add(Flatten())
model.add(Dense(5, activation= 'softmax'))
model.compile('adam', loss= 'categorical_crossentropy', metrics= ['accuracy'])
model.summary()
# training the model
model.fit(X_train, y_train, epochs= 10, batch_size= 128, validation_split= 0.2, verbose= 1)
# evaluating the model
score = model.evaluate(X_test, y_test, verbose=0)
print("Test Loss:", score[0])
print("Test Acc:", score[1])
创建了一个函数来清理文本。这非常重要,因为它将消除数据中不必要的噪音,并且还要注意此步骤将完全取决于您拥有的数据类型。为了帮助您简化,我在上面的代码中创建了一个 clean_text
函数,您可以在其中放置清理代码。它的使用方式应该是接收原始文本并提供干净的文本。您可能想要研究的一些库是 re、string 和 emoji。
如果您有足够的数据,最好估计词汇大小,而不是在将其传递给 Keras one_hot 函数时直接输入一些数字。我使用 nltk word_tokenize 创建了一个基本的 get_vocab_length 函数。您可以使用相同的或根据您的数据进一步增强它。
您可以进一步进行超参数调整和一些不同的神经网络设计。
它可能仍然不起作用,因为它完全取决于您拥有的数据质量和数据量。如果您的数据质量较差或数据量非常少,那么在尝试所有方法后,您很可能无法获得结果。
然后我建议您尝试在一些预训练模型上进行迁移学习,例如 BERT、RoBERTa 等。HuggingFace 为最先进的预训练模型提供了良好的支持,您可以从以下链接开始 -
关于python - 使用 LSTM 网络和 Keras 进行文本分类 0.0% 准确度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53969966/
我喜欢 smartcase,也喜欢 * 和 # 搜索命令。但我更希望 * 和 # 搜索命令区分大小写,而/和 ?搜索命令遵循 smartcase 启发式。 是否有隐藏在某个地方我还没有找到的设置?我宁
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题? Update the question所以它是on-topic对于堆栈溢出。 10年前关闭。 Improve this qu
从以下网站,我找到了执行java AD身份验证的代码。 http://java2db.com/jndi-ldap-programming/solution-to-sslhandshakeexcepti
似乎 melt 会使用 id 列和堆叠的测量变量 reshape 您的数据框,然后通过转换让您执行聚合。 ddply,从 plyr 包看起来非常相似..你给它一个数据框,几个用于分组的列变量和一个聚合
我的问题是关于 memcached。 Facebook 使用 memcached 作为其结构化数据的缓存,以减少用户的延迟。他们在 Linux 上使用 UDP 优化了 memcached 的性能。 h
在 Camel route ,我正在使用 exec 组件通过 grep 进行 curl ,但使用 ${HOSTNAME} 的 grep 无法正常工作,下面是我的 Camel 路线。请在这方面寻求帮助。
我正在尝试执行相当复杂的查询,在其中我可以排除与特定条件集匹配的项目。这是一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我正在尝试执行相当复杂的查询,我可以在其中排除符合特定条件集的项目。这里有一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我发现了很多嵌入/内容项目的旧方法,并且我遵循了在这里找到的最新方法(我假设):https://blog.angular-university.io/angular-ng-content/ 我正在尝试
我正在寻找如何使用 fastify-nextjs 启动 fastify-cli 的建议 我曾尝试将代码简单地添加到建议的位置,但它不起作用。 'use strict' const path = req
我正在尝试将振幅 js 与 React 和 Gatsby 集成。做 gatsby developer 时一切看起来都不错,因为它发生在浏览器中,但是当我尝试 gatsby build 时,我收到以下错
我试图避免过度执行空值检查,但同时我想在需要使代码健壮的时候进行空值检查。但有时我觉得它开始变得如此防御,因为我没有实现 API。然后我避免了一些空检查,但是当我开始单元测试时,它开始总是等待运行时异
尝试进行包含一些 NOT 的 Kibana 搜索,但获得包含 NOT 的结果,因此猜测我的语法不正确: "chocolate" AND "milk" AND NOT "cow" AND NOT "tr
我正在使用开源代码共享包在 iOS 中进行 facebook 集成,但收到错误“FT_Load_Glyph failed: glyph 65535: error 6”。我在另一台 mac 机器上尝试了
我正在尝试估计一个标准的 tobit 模型,该模型被审查为零。 变量是 因变量 : 幸福 自变量 : 城市(芝加哥,纽约), 性别(男,女), 就业(0=失业,1=就业), 工作类型(失业,蓝色,白色
我有一个像这样的项目布局 样本/ 一种/ 源/ 主要的/ java / java 资源/ .jpg 乙/ 源/ 主要的/ java / B.java 资源/ B.jpg 构建.gradle 设置.gr
如何循环遍历数组中的多个属性以及如何使用map函数将数组中的多个属性显示到网页 import React, { Component } from 'react'; import './App.css'
我有一个 JavaScript 函数,它进行 AJAX 调用以返回一些数据,该调用是在选择列表更改事件上触发的。 我尝试了多种方法来在等待时显示加载程序,因为它当前暂停了选择列表,从客户的 Angul
可能以前问过,但找不到。 我正在用以下形式写很多语句: if (bar.getFoo() != null) { this.foo = bar.getFoo(); } 我想到了三元运算符,但我认
我有一个表单,在将其发送到 PHP 之前我正在执行一些验证 JavaScript,验证后的 JavaScript 函数会发布用户在 中输入的文本。页面底部的标签;然而,此消息显示短暂,然后消失...
我是一名优秀的程序员,十分优秀!