- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试处理一个简单的应用程序,该应用程序计算培养皿照片上的细菌菌落。我主要使用 python 和 cv2 库。
我正在使用上面的代码:
#reading image (reading is fixed for tests) and putting Opening morphological transformation to improve edge visibility
img = cv2.imread("image1.jpg",1)
img = cv2.resize(img,(500,500))
kernel = py.ones((7,7),py.uint8)
open = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
#converting colors to GRAY scale, setting threshold and contours. Setting a copy for result comprasion
img_gray = cv2.cvtColor(open, cv2.COLOR_BGR2GRAY)
copy = img.copy()
ret,thresh = cv2.threshold(img_gray,190,255,cv2.THRESH_BINARY)
im2,contours2,hierarchies = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#drawing and counting countours (colonies)
visible_colonies = 0
for contour in (contours2):
(x,y),radius = cv2.minEnclosingCircle(contour)
center = (int(x),int(y))
radius = int(radius)
if(radius>2 and radius<25):
cv2.circle(img,center,radius,(255,0,255),2)
visible_colonies += 1
#showing result
plt.imshow(img)
plt.show()
print(visible_colonies)
plt.imshow(copy)
plt.show()
我可以清楚地看到有很多轮廓(菌落)没有被圈起来。同时,还有一些轮廓什么也没有。
我尝试做的事情:
我怀疑的是:
最后我的问题来了 - 如何尽可能提高查找轮廓的准确性?我不想在那里使用任何简化,我希望它尽可能准确。
最佳答案
此处的一个好方法可能是使用 cv2.inRange()
进行颜色阈值处理.这个想法是将图像转换为 HSV 格式,并使用较低/较高的颜色阈值来分割菌落。我们将检测到的菌落绘制到面具上,然后在面具上找到轮廓。
绘制到掩膜上的颜色分段菌落
结果
我们还可以跟踪菌落的数量
244
潜在的优化是提供更高分辨率的图像以获得更准确的结果。如果您只想检测中型/大型菌落,其他过滤器将使用 cv2.contourArea()
和最小阈值区域大小。
import numpy as np
import cv2
image = cv2.imread('1.png')
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower = np.array([0, 71, 0], dtype="uint8")
upper = np.array([179, 255, 255], dtype="uint8")
mask = cv2.inRange(hsv, lower, upper)
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
colonies = []
for c in cnts:
cv2.drawContours(image, [c], -1, (36, 255, 12), 2)
colonies.append(c)
print(len(colonies))
cv2.imshow('mask', mask)
cv2.imshow('image', image)
cv2.imwrite('mask.png', mask)
cv2.imwrite('image.png', image)
cv2.waitKey()
可以使用此脚本找到下限和上限
import cv2
import sys
import numpy as np
def nothing(x):
pass
useCamera=False
# Check if filename is passed
if (len(sys.argv) <= 1) :
print("'Usage: python hsvThresholder.py <ImageFilePath>' to ignore camera and use a local image.")
useCamera = True
# Create a window
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)
# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)
# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0
# Output Image to display
if useCamera:
cap = cv2.VideoCapture(0)
# Wait longer to prevent freeze for videos.
waitTime = 330
else:
img = cv2.imread(sys.argv[1])
output = img
waitTime = 33
while(1):
if useCamera:
# Capture frame-by-frame
ret, img = cap.read()
output = img
# get current positions of all trackbars
hMin = cv2.getTrackbarPos('HMin','image')
sMin = cv2.getTrackbarPos('SMin','image')
vMin = cv2.getTrackbarPos('VMin','image')
hMax = cv2.getTrackbarPos('HMax','image')
sMax = cv2.getTrackbarPos('SMax','image')
vMax = cv2.getTrackbarPos('VMax','image')
# Set minimum and max HSV values to display
lower = np.array([hMin, sMin, vMin])
upper = np.array([hMax, sMax, vMax])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
output = cv2.bitwise_and(img,img, mask= mask)
# Print if there is a change in HSV value
if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
phMin = hMin
psMin = sMin
pvMin = vMin
phMax = hMax
psMax = sMax
pvMax = vMax
# Display output image
cv2.imshow('image',output)
# Wait longer to prevent freeze for videos.
if cv2.waitKey(waitTime) & 0xFF == ord('q'):
break
# Release resources
if useCamera:
cap.release()
cv2.destroyAllWindows()
关于python - 使用 OpenCV 提高/优化查找轮廓的准确性,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57125006/
我使用以下代码来查看用户在特定页面上的停留时间。我为此脚本使用了带有 src 属性的隐藏图像: $timer_seconds = 1; while(!connection_aborted()) {
我在 Keras 中使用自定义损失函数: def get_top_one_probability(vector): return (K.exp(vector) / K.sum(K.exp(vect
当我使用 long 来节省一个月毫秒时,我发现一个问题。但我打印负数。所以我做了一个测试 代码如下: LogUtils.d(TAG, "long max time:"+Long.MAX_VALUE);
关于使用 Lenet5 网络解释某些优化器在 MNIST 上的性能,我有几个问题,以及验证损失/准确性与训练损失/准确性图表究竟告诉我们什么。所以一切都是在 Keras 中使用标准的 LeNet5 网
我有 1000 个 pdf(每个 200 页)。 我需要将每个 pdf 添加到 Azure 搜索索引中的索引(作为小文本 block 和相关元数据,例如每个 pdf 200 个 block ) 已达到
我必须在 mssql 数据库中存储一些间隔。我知道日期时间的准确性约为。 3.3ms(只能结束0、3、7)。但是当我计算日期时间之间的间隔时,我发现结果只能以 0、3 和 6 结尾。所以我总结的间隔越
我想制作一个需要将位置精确到大约 1m 或更小的 Android 应用程序。“Fused Location Manager API”是否足够好,或者 GPS 永远不会如此准确,无论是否与其他传感器融合
我想使用 pySerial 的 serial.tools.list_ports.comports() 列出可用的 COM 端口。 阅读documentation : The function retu
使用 pyomo 和 glpk 求解器,我定义了以下目标规则: def cost_rule(m): return (sum(m.rd[i]*m.pRdImp*m.dt - m.vr[i]*m.
我正在遵循“Lucene in Action”中的示例,第 308-315 页,它描述了 Lucene Spatial。我正在使用 lucene 2.9.4。我用过 http://geocoder.u
我一直在试验各种计时方法的代码。创建延迟的一种方法是使用thread.sleep(millis)运行线程,但可以很好地说明,线程“唤醒”的时间并不完全准确,可能在这个时间之前或之后。然后我遇到一个定义
我在使用 boost::sleep() 函数时遇到奇怪的问题。我有这个基本代码: #include #include #include void thread_func() { time
数字示例 我正在使用标准的 pytesseract img 来发送文本。我尝试过仅使用数字选项,90% 的情况下它是完美的,但上面是一个非常错误的例子!这个例子根本没有产生任何字符 如您所见,现在有字
我想从 python 中的图像中提取文本.为了做到这一点,我选择了 pytesseract .当我尝试从图像中提取文本时,结果并不令人满意。我也经历过this并实现了列出的所有技术。然而,它的表现似乎
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我想为我的移动项目需求之一实现条形码。要存储的数据量非常少(<25 个字母数字)。我想知道对于这个项目实现一维条形码或二维条形码(特别是二维码)是否更明智。如果有人能从 1d 与 2d 的角度对我进行
想象一个二元分类问题。假设我在 pred_test 中存储了 800,000 个预测概率。我将 cutoff 定义为 pred_test 中的任何值,以便大于或等于 cutoff 的值被分配值 1 和
已关闭。此问题需要 debugging details 。目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and the
我正在使用 iBeacon 和 Altbeacon 测试定位系统。我发现我的三角测量结果实际上非常准确,但有时需要 5 秒以上才能看到正确的结果。 例如,假设我目前正站在A点。 Altbeacon +
因此,我有 2 个独立的数据表,它们看起来非常相同,但它们行中的值可能不同。 编辑: 我可以通过创建一个可以用作主键的临时标识列来获得唯一 ID,如果这样做更容易的话。所以将 ID 列视为主键。 表A
我是一名优秀的程序员,十分优秀!