gpt4 book ai didi

用于 OCR 的 Python OpenCV 偏差校正

转载 作者:太空宇宙 更新时间:2023-11-03 21:23:12 24 4
gpt4 key购买 nike

目前,我正在做一个 OCR 项目,我需要从标签上读取文本(参见下面的示例图片)。我遇到了图像倾斜问题,我需要帮助修复图像倾斜,使文本水平而不是倾斜。目前,我正在使用的过程尝试对给定范围内的不同角度进行评分(下面包含代码),但这种方法不一致,有时会过度校正图像倾斜或平坦化无法识别倾斜并纠正它。请注意,在歪斜校正之前,我将所有图像旋转 270 度以使文本直立,然后通过下面的代码传递图像。传递给函数的图像已经是二进制图像。

代码:


def findScore(img, angle):
"""
Generates a score for the binary image recieved dependent on the determined angle.\n
Vars:\n
- array <- numpy array of the label\n
- angle <- predicted angle at which the image is rotated by\n
Returns:\n
- histogram of the image
- score of potential angle
"""
data = inter.rotate(img, angle, reshape = False, order = 0)
hist = np.sum(data, axis = 1)
score = np.sum((hist[1:] - hist[:-1]) ** 2)
return hist, score

def skewCorrect(img):
"""
Takes in a nparray and determines the skew angle of the text, then corrects the skew and returns the corrected image.\n
Vars:\n
- img <- numpy array of the label\n
Returns:\n
- Corrected image as a numpy array\n
"""
#Crops down the skewImg to determine the skew angle
img = cv2.resize(img, (0, 0), fx = 0.75, fy = 0.75)

delta = 1
limit = 45
angles = np.arange(-limit, limit+delta, delta)
scores = []
for angle in angles:
hist, score = findScore(img, angle)
scores.append(score)
bestScore = max(scores)
bestAngle = angles[scores.index(bestScore)]
rotated = inter.rotate(img, bestAngle, reshape = False, order = 0)
print("[INFO] angle: {:.3f}".format(bestAngle))
#cv2.imshow("Original", img)
#cv2.imshow("Rotated", rotated)
#cv2.waitKey(0)

#Return img
return rotated

校正前后标签的示例图像

修正前->修正后

如果有人能帮我解决这个问题,那会很有帮助。

最佳答案

这是 Projection Profile Method algorithm for skew angle estimation 的一个实现.各种角度点被投影到累加器阵列中,其中倾斜角可以定义为搜索间隔内的投影角度,使对齐最大化。这个想法是以不同角度旋转图像并为每次迭代生成像素直方图。为了确定偏斜角,我们比较峰值之间的最大差异并使用该偏斜角,旋转图像以校正偏斜。


原始 -> 更正

Skew angle: -2

import cv2
import numpy as np
from scipy.ndimage import interpolation as inter

def correct_skew(image, delta=1, limit=5):
def determine_score(arr, angle):
data = inter.rotate(arr, angle, reshape=False, order=0)
histogram = np.sum(data, axis=1, dtype=float)
score = np.sum((histogram[1:] - histogram[:-1]) ** 2, dtype=float)
return histogram, score

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

scores = []
angles = np.arange(-limit, limit + delta, delta)
for angle in angles:
histogram, score = determine_score(thresh, angle)
scores.append(score)

best_angle = angles[scores.index(max(scores))]

(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, best_angle, 1.0)
corrected = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, \
borderMode=cv2.BORDER_REPLICATE)

return best_angle, corrected

if __name__ == '__main__':
image = cv2.imread('1.png')
angle, corrected = correct_skew(image)
print('Skew angle:', angle)
cv2.imshow('corrected', corrected)
cv2.waitKey()

注意:您可能需要根据图像调整deltalimit 值。 delta 值控制迭代步长,它将迭代到控制最大角度的 limit。此方法通过迭代检查每个角度 + delta 非常简单,目前仅适用于校正 +/- 5 度范围内的倾斜。如果您需要在更大的角度进行校正,请调整limit 值。对于另一种处理偏斜的方法,take a look at this alternative method .

关于用于 OCR 的 Python OpenCV 偏差校正,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57964634/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com