- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
在我的项目中,我想裁剪图像的 ROI。为此,我创建了一个包含感兴趣区域的 map 。现在我想裁剪具有最重要像素的区域(黑色不重要,白色很重要)。
有人知道如何实现它吗?我认为这是一个最大化问题
下图中的红色边框是我要如何裁剪此图像的示例
最佳答案
如果我正确理解了您的问题,那么您已经计算了图像中每个点的值。这些值表明每个点的“重要性”/“趣味性”/“显着性”。包含这些值的矩阵/图像是您所指的“ map ”。您的目标是获得具有高“重要性”分数的感兴趣区域 (ROI) 的边界框。
我认为您可以分割 ROI 的方法是应用基于 Graph Cut 的分割,使用重要性图在每个像素处计算“分数”。分割的结果是一个二进制掩码,它掩盖了“重要”像素。接下来,运行 OpenCV 的 findcontours在此二进制掩码上运行以获取各个连接的组件。然后使用 OpenCV 的 boundingRect findContours(...) 返回的轮廓上的函数以获取边界框。
以这种方式使用基于 Graph Cut 的分割算法的好处在于,它将连接碎片化的组件,即即使您的“重要性”图嘈杂,生成的二进制掩码也不会有小洞。
在 OpenCV 中已经实现的一种基于 Graph Cut 的分割算法是 GrabCut 算法。一个快速的技巧是将它应用到你的“重要性” map 上,以获得我上面提到的二进制掩码。一种更复杂的方法是使用您的“重要性”图构建前景和背景(可能是颜色?)模型并将其作为输入传递给函数。有关 OpenCV 中 GrabCut 的更多详细信息,请参见:http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=grabcut#void grabCut(InputArray img, InputOutputArray mask, Rect rect, InputOutputArray bgdModel, InputOutputArray fgdModel, int iterCount, int mode)
如果您想要更大的灵 active ,您可以使用以下 MRF 库破解您自己的基于图形的分割算法。该库允许您在计算图割时指定自定义目标函数:http://vision.middlebury.edu/MRF/code/
要使用 MRF 库,您需要在图像中的每个点指定“成本”,指示该点是“前景”还是“背景”。您也可以将这种二分法视为“重要”或“不重要”,而不是“前景”与“背景”。
MRF 库的目标是在每个点返回一个标签,以便分配这些标签的总成本尽可能小。因此,游戏是想出一个函数来计算你认为重要的点的小成本,否则大。
具体来说,每个点的成本由两部分组成:1)数据项/函数和 2)平滑项/函数。如前所述,每个点的数据项越小,该点被选中的可能性就越大。如果您的“重要性”分数 s_ij 在 [0, 1] 范围内,那么计算数据项的常用方法是 -log(s_ij)。
平滑项是一种建议 2 个相邻像素 p、q 是否应该具有相同标签的方法,即“前景”、“背景”或一个“前景”和另一个“背景”。与数据成本类似,您必须构建它,使得具有相似“重要性”分数的相邻像素的成本很小,以便为它们分配相同的标签。该术语负责“平滑”生成的蒙版,这样您就不会在“重要性”高的区域内散布低“重要性”的像素,反之亦然。如果有这样的区域,上面提到的 OpenCV 的 findContours(...) 函数将返回这些区域的轮廓,也许可以通过检查它们的大小来过滤掉它们。
有关计算成本的函数的详细信息,请参阅 GrabCut 论文:GrabCut
这篇博文提供了更多关于在 OpenCV 中创建自己的图形分割算法的详细信息(和代码):http://www.morethantechnical.com/2010/05/05/bust-out-your-own-graphcut-based-image-segmentation-with-opencv-w-code/
另一篇论文展示了如何在 GrabCut 论文中使用更好的符号和没有复杂的图像抠图部分(未在 OpenCV 版本中实现)对灰度图像(您的情况)执行图形切割分割,这是:Graph Cuts and Efficient N-D Image Segmentation
希望这可以帮助。
关于opencv - 如何裁剪图像的 roi,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13725696/
我正在尝试从我的系统中完全删除 opencv。我试图学习 ROS,而在教程中我遇到了一个问题。创建空工作区后,我调用catkin_make 它给出了一个常见错误,我在 answers.ros 中搜索并
我在尝试逐步转移对warpAffine的调用时遇到崩溃(不是异常): void rotateImage( const Mat& source, double degree, Mat& output )
如何处理opencv gpu异常?是否有用于opencvgpu异常处理的特定错误代码集api? 我尝试了很多搜索,但只有1个错误代码,即CV_GpuNotSupported。 请帮帮我。 最佳答案 虽
笔记 我是 OpenCV(或计算机视觉)的新手,所以告诉我搜索查询会很有帮助! 我想问什么 我想编写一个从图片中提取名片的程序。 我能够提取粗略的轮廓,但反射光会变成噪点,我无法提取准确的轮廓。请告诉
我想根据像素的某个阈值将Mono16类型的Mat转换为二进制图像。我尝试使用以下内容: 阈值(img,ret,0.1,1,CV_THRESH_BINARY); 尝试编译时,出现make错误,提示: 错
我对使用GPU加速的OpenCV中的卷积函数有疑问。 使用GPU的卷积速度大约快3.5 运行时: convolve(src_32F, kernel, cresult, false, cbuffer);
我正在尝试使用非对称圆圈网格执行相机校准。 我通常找不到适合CirclesGridFinder的文档,尤其是findHoles()函数的文档。 如果您有关于此功能如何工作以及其参数含义的信息,将不胜感
在计算机上绘图和在 OpenCV 的投影仪上投影之间有什么区别吗? 一种选择是投影显示所有内容的计算机屏幕。但也许也有这样的选择,即在投影仪上精确地绘制和投影图像,仅使用计算机作为计算机器。如果我能做
我将Processing(processing.org)用于需要人脸跟踪的项目。现在的问题是由于for循环,程序将耗尽内存。我想停止循环或至少解决内存不足的问题。这是代码。 import hyperm
我有下面的代码: // Image Processing.cpp : Defines the entry point for the console application. // //Save
我正在为某些项目使用opencv。并有应解决的任务。 任务很简单。我有一张主图片,并且有一个模板,而不是将主图片与模板进行比较。我使用matchTemplate()函数。我只是好奇一下。 在文档中,我
我正在尝试使用以下命令创建级联分类器: haartraining -data haarcascade -vec samples.vec -bg negatives.dat -nstages 20 -n
我试图使用OpenCV检测黑色图像中一组形状的颜色,为此我使用了Canny检测。但是,颜色输出总是返回为黑色。 std::vector > Asteroids::DetectPoints(const
我正在尝试使用OpenCv 2.4.5从边缘查找渐变方向,但是我在使用cvSobel()时遇到问题,以下是错误消息和我的代码。我在某处读到它可能是由于浮点(??)之间的转换,但我不知道如何解决它。有帮
我正在尝试构建循环关闭算法,但是在开始开发之前,我想测试哪种功能描述符在真实数据集上效果更好。 我有两个在两个方向拍摄的走廊图像,一个进入房间,另一个离开同一个房间。因此它们代表相同的场景,但具有2个
有没有一种方法可以比较直方图,但例如要排除白色,因此白色不会影响比较。 最佳答案 白色像素有 饱和度 , S = 0 .因此,在创建直方图时很容易从计数中删除白色像素。请执行下列操作: 从 BGR 转
就像本主题的标题一样,如何在OpenCV中确定图像的特定像素(灰度或彩色)是否饱和(例如,亮度过高)? 先感谢您。 最佳答案 根据定义,饱和像素是指与强度(即灰度值或颜色分量之一)等于255相关联的像
我是OpenCV的新用户,正在从事大学项目。程序会获取输入图像,对其进行综合模糊处理,然后对其进行模糊处理。当对合成模糊图像进行反卷积时,会生成边界伪像,因为...好吧,到目前为止,我还没有实现边界条
我想知道OpenCV是haar特征还是lbp是在多尺度搜索过程中缩放图像还是像论文中提到的那样缩放特征本身? 编辑:事实证明,检测器可以缩放图像,而不是功能。有人知道为什么吗?通过缩放功能可以更快。
我在openCv中使用SVM.train命令(已定义了适当的参数)。接下来,我要使用我的算法进行分类,而不是使用svm.predict。 可能吗?我可以访问训练时生成的支持 vector 吗?如果是这
我是一名优秀的程序员,十分优秀!