- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
要提取颜色,我们有此功能
# define range of blue color in HSV
lower_blue = np.array([110,50,50])
upper_blue = np.array([130,255,255])
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(hsv, lower_blue, upper_blue)
upper = np.array([60, 255, 255])
upper = cv2.cvtColor(upper, cv2.COLOR_HSV2BGR)
upper = totuple(upper/-255)
print(upper)
plt.imshow([[upper]])
最佳答案
什么是HSV颜色
像HSL(或OpenCV中的HLS)一样,HSV是圆柱颜色空间之一。
该名称在某种程度上描述了如何引用其值。
色相表示为0到360度(在OpenCV中,为适应8位无符号整数格式,它们的度数除以2得到0到179之间的数字;因此OpenCV中的110为220度)。如果要采用“范围”的色相值,就好比从蛋糕上切下一块。您只是拿了一些蛋糕块。
饱和通道是距中心的距离-半径。中心绝对没有饱和度-只有从黑色到白色的灰色。如果您使用这些值的范围,则类似于刮除圆柱体的外部,或从中心切出一个圆圈。例如,如果范围是0到255,则范围0到127将是仅延伸到半径一半的圆柱;否则,范围将变为0。 127到255之间的范围将是切割一个半径为一半的内圆柱。
值通道是一个有点令人困惑的名称。这并不是完全由暗到亮,因为最大值代表直接颜色,而最小值代表黑色。这是圆柱体的高度。很难想象垂直切割圆柱体的一部分。
HSV值范围
函数cv2.inRange(image, lower_bound, upper_bound)
在lower_bound
和upper_bound
之间找到图像的所有值。例如,如果您的图像是具有3通道的3x3图像(仅出于简单演示目的),则可能看起来像这样:
# h channel # s channel # v channel
100 150 250 150 150 100 50 75 225
50 100 125 75 25 50 255 100 50
0 255 125 100 200 250 50 75 100
lower_b
应该是
[100, 0, 0]
,而
upper_b
应该是
[200, 255, 255]
。这样,我们的遮罩将仅考虑色相通道中的值,而不受饱和度和值的影响。这就是HSV如此受欢迎的原因-您可以通过色相选择颜色,而不论它们的亮度或暗度,因此只需指定色相通道的最小值和最大值即可选择深红色和亮红色。
s
值较低,而
v
值较高,并且色角无关紧要。因此,
lower_b
看起来像
[0, 0, 200]
,
upper_b
看起来像
[255, 50, 255]
。这意味着将包括所有
H
值,并且不会影响我们的遮罩。但是,将仅包含0到50之间的
S
值(朝向圆柱体的中心),并且仅包括200到255之间的
V
值(朝向圆柱体的顶部)。
S
值范围创建从左到右的值渐变,为
V
值范围创建从上到下的值渐变,然后循环遍历每个
H
值。整个程序可能如下所示:
import numpy as np
import cv2
lower_b = np.array([110,50,50])
upper_b = np.array([130,255,255])
s_gradient = np.ones((500,1), dtype=np.uint8)*np.linspace(lower_b[1], upper_b[1], 500, dtype=np.uint8)
v_gradient = np.rot90(np.ones((500,1), dtype=np.uint8)*np.linspace(lower_b[1], upper_b[1], 500, dtype=np.uint8))
h_array = np.arange(lower_b[0], upper_b[0]+1)
for hue in h_array:
h = hue*np.ones((500,500), dtype=np.uint8)
hsv_color = cv2.merge((h, s_gradient, v_gradient))
rgb_color = cv2.cvtColor(hsv_color, cv2.COLOR_HSV2BGR)
cv2.imshow('', rgb_color)
cv2.waitKey(250)
cv2.destroyAllWindows()
H
值。从左到右,我们有最小到最大
S
值,从上到下,我们有最小到最大
V
值。此动画中显示的每种颜色中的每一种都会从图像中选择,作为
mask
的一部分。
min
和
max
之间,然后将所有通道一起
&
。
def inRange(img, lower_b, upper_b):
ch1, ch2, ch3 = cv2.split(img)
ch1m = (lower_b[0] <= ch1) & (ch1 <= upper_b[0])
ch2m = (lower_b[1] <= ch2) & (ch2 <= upper_b[1])
ch3m = (lower_b[2] <= ch3) & (ch3 <= upper_b[2])
mask = ch1m & ch2m & ch3m
return mask.astype(np.uint8)*255
lower_b = np.array([200,200,200])
upper_b = np.array([255,255,255])
mask = cv2.inRange(img, lower_b, upper_b) # OpenCV function
mask2 = inRange(img, lower_b, upper_b) # above defined function
print((mask==mask2).all()) # checks that the masks agree on all values
# True
.gif
,以演示:
关于python - python + opencv-如何绘制hsv范围?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45070661/
我正在尝试从我的系统中完全删除 opencv。我试图学习 ROS,而在教程中我遇到了一个问题。创建空工作区后,我调用catkin_make 它给出了一个常见错误,我在 answers.ros 中搜索并
我在尝试逐步转移对warpAffine的调用时遇到崩溃(不是异常): void rotateImage( const Mat& source, double degree, Mat& output )
如何处理opencv gpu异常?是否有用于opencvgpu异常处理的特定错误代码集api? 我尝试了很多搜索,但只有1个错误代码,即CV_GpuNotSupported。 请帮帮我。 最佳答案 虽
笔记 我是 OpenCV(或计算机视觉)的新手,所以告诉我搜索查询会很有帮助! 我想问什么 我想编写一个从图片中提取名片的程序。 我能够提取粗略的轮廓,但反射光会变成噪点,我无法提取准确的轮廓。请告诉
我想根据像素的某个阈值将Mono16类型的Mat转换为二进制图像。我尝试使用以下内容: 阈值(img,ret,0.1,1,CV_THRESH_BINARY); 尝试编译时,出现make错误,提示: 错
我对使用GPU加速的OpenCV中的卷积函数有疑问。 使用GPU的卷积速度大约快3.5 运行时: convolve(src_32F, kernel, cresult, false, cbuffer);
我正在尝试使用非对称圆圈网格执行相机校准。 我通常找不到适合CirclesGridFinder的文档,尤其是findHoles()函数的文档。 如果您有关于此功能如何工作以及其参数含义的信息,将不胜感
在计算机上绘图和在 OpenCV 的投影仪上投影之间有什么区别吗? 一种选择是投影显示所有内容的计算机屏幕。但也许也有这样的选择,即在投影仪上精确地绘制和投影图像,仅使用计算机作为计算机器。如果我能做
我将Processing(processing.org)用于需要人脸跟踪的项目。现在的问题是由于for循环,程序将耗尽内存。我想停止循环或至少解决内存不足的问题。这是代码。 import hyperm
我有下面的代码: // Image Processing.cpp : Defines the entry point for the console application. // //Save
我正在为某些项目使用opencv。并有应解决的任务。 任务很简单。我有一张主图片,并且有一个模板,而不是将主图片与模板进行比较。我使用matchTemplate()函数。我只是好奇一下。 在文档中,我
我正在尝试使用以下命令创建级联分类器: haartraining -data haarcascade -vec samples.vec -bg negatives.dat -nstages 20 -n
我试图使用OpenCV检测黑色图像中一组形状的颜色,为此我使用了Canny检测。但是,颜色输出总是返回为黑色。 std::vector > Asteroids::DetectPoints(const
我正在尝试使用OpenCv 2.4.5从边缘查找渐变方向,但是我在使用cvSobel()时遇到问题,以下是错误消息和我的代码。我在某处读到它可能是由于浮点(??)之间的转换,但我不知道如何解决它。有帮
我正在尝试构建循环关闭算法,但是在开始开发之前,我想测试哪种功能描述符在真实数据集上效果更好。 我有两个在两个方向拍摄的走廊图像,一个进入房间,另一个离开同一个房间。因此它们代表相同的场景,但具有2个
有没有一种方法可以比较直方图,但例如要排除白色,因此白色不会影响比较。 最佳答案 白色像素有 饱和度 , S = 0 .因此,在创建直方图时很容易从计数中删除白色像素。请执行下列操作: 从 BGR 转
就像本主题的标题一样,如何在OpenCV中确定图像的特定像素(灰度或彩色)是否饱和(例如,亮度过高)? 先感谢您。 最佳答案 根据定义,饱和像素是指与强度(即灰度值或颜色分量之一)等于255相关联的像
我是OpenCV的新用户,正在从事大学项目。程序会获取输入图像,对其进行综合模糊处理,然后对其进行模糊处理。当对合成模糊图像进行反卷积时,会生成边界伪像,因为...好吧,到目前为止,我还没有实现边界条
我想知道OpenCV是haar特征还是lbp是在多尺度搜索过程中缩放图像还是像论文中提到的那样缩放特征本身? 编辑:事实证明,检测器可以缩放图像,而不是功能。有人知道为什么吗?通过缩放功能可以更快。
我在openCv中使用SVM.train命令(已定义了适当的参数)。接下来,我要使用我的算法进行分类,而不是使用svm.predict。 可能吗?我可以访问训练时生成的支持 vector 吗?如果是这
我是一名优秀的程序员,十分优秀!