gpt4 book ai didi

image-processing - 使用 OpenCV 均衡/标准化彩色图像中的色相饱和度亮度

转载 作者:太空宇宙 更新时间:2023-11-03 21:14:34 35 4
gpt4 key购买 nike

我想对同一主题的两个半脸彩色图像进行均衡,然后将它们合并。它们每个都有不同的色调饱和度和亮度值....使用 opencv 我如何标准化/均衡每个半图像?

我尝试执行 cvEqualizeHist(v, v);在转换后的 HSV 图像的 v 值上,但两幅图像仍然存在显着差异,合并后两半的颜色之间仍然有一条线...谢谢

最佳答案

您是否尝试阅读此链接? http://answers.opencv.org/question/75510/how-to-make-auto-adjustmentsbrightness-and-contrast-for-image-android-opencv-image-correction/

void Utils::BrightnessAndContrastAuto(const cv::Mat &src, cv::Mat &dst, float clipHistPercent)
{

CV_Assert(clipHistPercent >= 0);
CV_Assert((src.type() == CV_8UC1) || (src.type() == CV_8UC3) || (src.type() == CV_8UC4));

int histSize = 256;
float alpha, beta;
double minGray = 0, maxGray = 0;

//to calculate grayscale histogram
cv::Mat gray;
if (src.type() == CV_8UC1) gray = src;
else if (src.type() == CV_8UC3) cvtColor(src, gray, CV_BGR2GRAY);
else if (src.type() == CV_8UC4) cvtColor(src, gray, CV_BGRA2GRAY);
if (clipHistPercent == 0)
{
// keep full available range
cv::minMaxLoc(gray, &minGray, &maxGray);
}
else
{
cv::Mat hist; //the grayscale histogram

float range[] = { 0, 256 };
const float* histRange = { range };
bool uniform = true;
bool accumulate = false;
calcHist(&gray, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange, uniform, accumulate);

// calculate cumulative distribution from the histogram
std::vector<float> accumulator(histSize);
accumulator[0] = hist.at<float>(0);
for (int i = 1; i < histSize; i++)
{
accumulator[i] = accumulator[i - 1] + hist.at<float>(i);
}

// locate points that cuts at required value
float max = accumulator.back();
clipHistPercent *= (max / 100.0); //make percent as absolute
clipHistPercent /= 2.0; // left and right wings
// locate left cut
minGray = 0;
while (accumulator[minGray] < clipHistPercent)
minGray++;

// locate right cut
maxGray = histSize - 1;
while (accumulator[maxGray] >= (max - clipHistPercent))
maxGray--;
}

// current range
float inputRange = maxGray - minGray;

alpha = (histSize - 1) / inputRange; // alpha expands current range to histsize range
beta = -minGray * alpha; // beta shifts current range so that minGray will go to 0

// Apply brightness and contrast normalization
// convertTo operates with saurate_cast
src.convertTo(dst, -1, alpha, beta);

// restore alpha channel from source
if (dst.type() == CV_8UC4)
{
int from_to[] = { 3, 3 };
cv::mixChannels(&src, 4, &dst, 1, from_to, 1);
}
return;
}

关于image-processing - 使用 OpenCV 均衡/标准化彩色图像中的色相饱和度亮度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/7152195/

35 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com