- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我已经开始使用 Python 中的 TensorFlow 开发一个简单的项目,通过循环网络预测股票市场价格。到目前为止,这是我的代码:
n_steps = 30
n_inputs = 1
n_neurons = 100
n_outputs = 1
X = tf.placeholder(tf.float32, [1, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
cell = tf.contrib.rnn.OutputProjectionWrapper(
tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu),
output_size = n_outputs
)
outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
learning_rate = 0.001
loss = tf.reduce_mean(tf.square(outputs - y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
init = tf.global_variables_initializer()
n_iterations = numStocks
batch_size = 1
def priceArrayToRNNFormat(priceArray):
list = []
print(priceArray)
for price in priceArray:
list.append(price)
return np.array(list)
with tf.Session() as sess:
init.run()
for iteration in range(n_iterations):
dataOrig = [allStocksDict[list(allStocksDict.keys())[iteration]]]
data = priceArrayToRNNFormat(dataOrig)
print(data)
X_batch = data
y_batch = data
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
if iteration % 100 == 0:
mse = loss.eval(feed_dict={X: X_batch, y: y_batch})
print(iteration, "\tMSE", mse)
作为引用,allStocksDict 只是一个字典,其中每个键都是股票代码,值是随时间变化的价格的 30 个元素数组。运行代码时,我得到以下输出:
[['14.9400', '15.0000', '14.8800', '14.6900', '14.6300', '15.0000', '14.9400', '15.1300', '15.5600', '15.3100', '15.3800', '14.6900', '15.0000', '15.1300', '14.6300', '14.0600', '14.1300', '14.9400', '14.4400', '13.6300', '13.0000', '12.3800', '12.5000', '12.6300', '13.0000', '12.6900', '13.1300', '13.1900', '13.0600', '12.9400']]
[['14.9400' '15.0000' '14.8800' '14.6900' '14.6300' '15.0000' '14.9400'
'15.1300' '15.5600' '15.3100' '15.3800' '14.6900' '15.0000' '15.1300'
'14.6300' '14.0600' '14.1300' '14.9400' '14.4400' '13.6300' '13.0000'
'12.3800' '12.5000' '12.6300' '13.0000' '12.6900' '13.1300' '13.1900'
'13.0600' '12.9400']]
Traceback (most recent call last):
File "/home/john/Python/StockProject/monthlyRnn1.py", line 127, in <module>
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
File "/home/john/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/home/john/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1128, in _run
str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (1, 30) for Tensor 'Placeholder:0', which has shape '(1, 30, 1)'
我尝试过单独提供列表,而不将其转换为数组,并且在将其转换为数组之前不将数组转换为向量,尽管此错误仍然存在。我非常感谢这方面的帮助。
最佳答案
一种可能的解决方案是
def priceArrayToRNNFormat(priceArray):
#list = []
#print(priceArray)
#for price in priceArray:
# list.append(price)
#return np.array(list)
return np.reshape(np.asarray(priceArray, dtype=np.float32), (1, n_steps, n_inputs))
嵌套列表也是可以接受的,另一种选择是转置priceArray并将其作为小批量再次包装到列表中。
但前一个选项 np.reshape() 既简单又快速。
关于python - 如何正确塑造 RNN 的时间序列数据?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55085971/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!