- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在 Android 平台上创建数独解决应用程序,但在处理图像时遇到了问题。我正在尝试使用 Sobel 过滤器使用 OpenCV 找到拼图的水平线,然后使用 Otsu 算法进行阈值处理:
Mat kernaly = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(10,2));
Mat dy = new Mat();
Mat close = new Mat();
Imgproc.Sobel(img, dy, CvType.CV_16S, 0, 2);
Core.convertScaleAbs(dy, dy);
Core.normalize(dy,dy,0,255,Core.NORM_MINMAX);
Imgproc.threshold(dy, close, 0, 255, Imgproc.THRESH_BINARY|Imgproc.THRESH_OTSU);
Imgproc.morphologyEx(close, close, Imgproc.MORPH_DILATE, kernaly);
这个方法其实对大多数图片都适用,例如:
但是,对于下面的图片,它失败了:
有人可以解释为什么结果差异如此之大,而上面的第二张图片只返回一行吗?另外,我是否应该改用其他方法,例如 Canny 或 Hough 线?
提前致谢!
编辑:根据 marol 的建议,我尝试在不扭曲图像的情况下尽可能多地移除黑色边框。这是将上述相同过程应用于这些重新处理的图像时的结果。
图 1:
图 2:
如您所见,结果更好,因为已检测到大多数线条。然而,它仍然不够好。可以通过添加固定阈值来改进,但每个图像的阈值必须不同。
我可能会使用一种新方法,因为这种方法似乎不够稳健。任何提示将不胜感激。
最佳答案
问题可能是由于强度分布引起的。如果您查看 sobel 运算符后的直方图:
将其与成功检测到 otsu 的图像直方图进行比较:
您可以很容易地在第一个直方图中看到失败,因为计算的阈值向右移动而不是向左移动(即使左侧的主峰突出所有黑色像素)。在第二种情况下,分布并没有那么分为峰值和平坦其余部分,而不是我们有更多的白色像素“携带”计算阈值到右边的情况。
换句话说,你必须摆脱黑色像素的支配。换句话说,尝试缩放数独,使周围的黑色像素边框尽可能小。这将使分发更像第二种情况。
恕我直言,根据这些直方图,您可以说该方法非常敏感,因为图像中“黑色”和“白色”部分之间的差异,因此计算的阈值水平对图像非常敏感。我不会依赖这种方法。一些固定的阈值水平呢?这在一般情况下可能听起来不太好,但在这里它可能更确定并且仍然正确。
关于opencv - Sobel 滤波图像上的 Otsu 阈值处理给出不同的结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25202260/
我尝试用java实现Sobel边缘检测。它有点有效,但我收到了很多看似随机的噪音...... 我将图像加载为 BufferedImages 并首先将其转换为灰度图像(通过我在网上找到的算法)。之后我计
我尝试在 Java 中实现 Sobel 运算符,但结果只是一些像素的混合。 int i, j; FileInputStream inFile = new FileInputStream
我有每个像素的 Sobel 算子的梯度。在我的例子中是 320x480。但是我怎样才能将它们与方向联系起来呢?例如,我打算绘制指纹方向图。那么,我该如何开始呢? 是将梯度分成 block (例如 16
我为 Sobel 运算符编写了一个用于边缘检测的类,但是当我使用示例图像时,我的边缘消失了。如果有人可以帮助我,我将不胜感激。 import java.awt.image.BufferedImage;
x-导数 Sobel 看起来是这样的: -1 0 +1 -2 0 +2 -1 0 +1 假设我的图像有两个样本看起来像这样(0=黑色,1=白色): 0 0 1 1 0 0 0 0
我正在使用图像上的索贝尔边缘检测进行作业。我目前正在努力进行渐变操作。编译时收到“二元运算符 '*' 的操作数类型错误”错误。我认为这可能是因为我将所有像素定义为字母,并且我不确定下一步应该是什么。任
我的 Sobel 边缘检测算子的输出很奇怪。这是我的代码: BufferedImage temp = img; float kernelx[][] = {{-1, 0, 1},{-2,
我想在我的 android 应用程序中使用 Sobel 运算符。但是我不明白如何使用一个像素。 int sobel_x[][] = {{-1, 0, 1}, {-2, 0, 2},
我想在图像上使用高斯模糊作为使用 sobel 边缘检测过滤器的预处理步骤。 我以前在灰度图像上有效地实现了 sobel 和高斯模糊运算符,但是,我从未尝试过在彩色图像上使用它们。 之前,我一直采用像素
对于嵌入式设计,我试图在不使用缓冲器的情况下在板上实现索贝尔边缘检测。即我直接从屏幕上阅读和写作。但是,我可以存储大约一两个图像宽度的数据以供以后引用。这是由于董事会规定的限制。但是我陷入了一些问题。
这个问题不太可能帮助任何 future 的访问者;它只与一个小的地理区域、一个特定的时间点或一个非常狭窄的情况有关,这些情况并不普遍适用于互联网的全局受众。为了帮助使这个问题更广泛地适用,visit
我试图理解 cv2.Sobel 中的 scale 参数.将 scale 设置为 1/8,我沿 x 轴得到如下输出: 但是对于 scale = 10 或 scale = 100,输出非常相似。 上面两幅
我正在使用 sobel 运算符通过 EmguCV 3.0(OpenCV 的 .NET 包装器)检测灰度图像中的边缘。 我使用的代码是 Image gray = new Image(@"C:\gray.
我正在使用 skimage 创建一个与此类似的 sobel 过滤器图像... 我想知道有没有办法锐化这个 sobel 滤镜图像?比如说,把那些比较淡的白线去掉,比如气球后面的淡淡的线条? 我用 Ski
OpenCV 文档说,(order == 0) 表示不会在这个方向上应用导数,即不会执行此内核的计算。 (Order == 1) 意味着这个方向的图像和内核只是一个简单的卷积。 但是 (order =
我想在文本中找到笔划的方向。 Sobel 算子如何用于此目的? 这张图显示的是dp,也就是梯度方向。我想知道如何应用 Sobel 运算符找到要选择的像素,从 p 到 q,沿着路径 sp,到找到边缘上的
我正在尝试对墙壁图像使用 sobel 过滤器,但它不起作用。 我的代码是: im=scipy.misc.imread('IMG_1479bis.JPG') im = im.astype('int32'
阅读一篇论文,我很难理解所描述的算法: 给定手写样本的黑白数字图像,裁剪出单个字符进行分析。由于这可以是任意大小,因此算法需要考虑到这一点(如果更简单,我们可以假设大小为 2^n x 2^m)。 现在
我正在尝试在水平和垂直方向上实现 sobel 运算符。但不知何故我得到了反向输出。我在下面附上的代码。对于水平蒙版 char mask [3][3]= {{-1,-2,-1},{0,0,0},{1,
我在使用 Sobel 算子进行边缘检测时遇到问题:它会产生太多假边缘,效果如下图所示。我正在使用 3x3 sobel 运算符 - 首先提取垂直然后水平,最终输出是每个滤波器输出的幅度。合成图像的边
我是一名优秀的程序员,十分优秀!