- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在构建一个大型 pyomo 模型,具有超过 100 万个约束和 200 万个变量。
我正在寻找减少我正在构建的模型的内存需求的建议。
目前它需要超过 20gb
的 RAM。
我该如何减少这个?
我从未测试过使用/不使用 within=pyomo.NonNegativeReals
来定义变量。但我假设它会减少给定变量所需的内存量。在不减少变量或约束数量的情况下,我还可以做其他事情吗?
例如:
以下 var
将需要 X
字节内存
m.var = pyomo.Var(
m.index)
也许以下将需要 X-1
字节内存
m.var = pyomo.Var(
m.index,
within=pyomo.NonNegativeReals)
当然这只是猜测。未经测试就无法确定这一点。但是,如果有人对此问题有想法或更多经验,我愿意尝试任何事情。
有什么想法吗?
一些测试:
请记住,这不是真正的模型,而是使用其他数据构建的示例。但仍然是相同的脚本。
index=1000 // Full Consts // 347580 KB (commit) // 370652 KB (working set)
0 Const Full Rules // 282416 KB (commit) // 305252 KB (working set)
0 Const 0 Rule // 282404 KB (commit) // 305200 KB (working set)
1 Const 1 Rule // 290408 KB (commit) // 313136 KB (working set)
index=8760 // Full Consts // 1675860 KB (commit) // 1695676 KB (working set)
最佳答案
我使用pympler
来分析您向我指出的测试用例。这是我发现的:
在pyomo_model_prep
之后(加载数据并将其放置到空ConcreteModel
上):
添加所有 Set
和 Param
对象后:
添加所有 Var
对象后:
添加所有Constraint
对象后:
当我将时间步设置为 60 时,结果是
因此,当时间步数较多时,变量确实会对模型内存产生相当大的影响。我能看到的减少内存使用的唯一明显的地方是不要将所有数据存储在模型上(或者在不再需要后将其从模型中删除),那么垃圾收集器可能会清理未使用的数据.
不幸的是,实际上没有任何简单的方法可以减少变量声明的内存。
更新 1:仅供引用,变量声明的几乎所有内存使用量都是 e_pro_in
和 e_pro_out
索引变量的结果。
更新 2:如果模型中未使用 e_pro_in
和 e_pro_out
变量的大量索引,您可以通过构建缩减索引集来减少内存需求对于他们每个人来说。看起来可能是这样的:
e_pro_in_index = []
for t in m.tm:
for i,j in m.pro_tuples:
for c in m.com:
if ...:
e_pro_in_index.append((t,i,j,c))
m.e_pro_in_index = Set(dimen=4, initialize=e_pro_in_index)
m.e_pro_in = pyomo.Var(
m.e_pro_in_index,
within=pyomo.NonNegativeReals,
doc='Power flow of commodity into process (MW) per timestep')
您需要从约束规则中提取逻辑来找出不需要的索引。
关于python - 减少 pyomo 模型的内存需求,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55284853/
我刚开始使用 Pyomo,我一直无法弄清楚如何编写双重求和代码。类似于 this . 有人可以给我提示吗?谢谢你们的帮助!! 最佳答案 假设您的模型声明如下: m = ConcreteModel()
我的优化需要几个小时才能在高性能服务器上解决。我想将解决方案保存到磁盘,然后在我的笔记本电脑上将它们重新加载到模型实例中。这将使我能够在 python 命令行中以交互方式探索结果,并开发或测试新编写的
我正在尝试从我的 pyomo 模型中输出目标值。我确实访问了变量值,但无法访问目标函数值。我的代码是: instance = model.create_instance(data) opt =
我不想在程序变量中设置初始值和对偶值。有没有具体的方法来做到这一点。我可以看到 Var 对象中有一个初始化选项,但我不确定如何以这种方式使用它 最佳答案 如果要在声明变量时设置变量的值,可以使用ini
我正在努力寻找一种有效的方法来检索优化问题的解决方案。该解决方案包含大约 200K 个变量,我希望在 pandas DataFrame 中使用这些变量。在网上搜索后,我发现访问变量的唯一方法是通过一个
我正在尝试使用 ANTIGONE 求解器(在 GAMS 中获得许可)解决 MINLP 问题,但我很难更改求解器的高级设置。 首先,我按如下方式从 Pyomo 调用求解器。 solver = pe.So
我尝试使用 pip 中的附加功能安装 pyomo,并使用后来的 Conda。一切都显示正常,但当我尝试使用它时,我收到以下错误。 from pyomo.environ import * 文件“C:..
我注意到 Pyomo 5.3 提供了一个 GAMS 求解器插件。 https://github.com/Pyomo/pyomo/blob/master/pyomo/solvers/plugins/so
我写信是因为我在安装时遇到问题 Pyomo使用 pip在 Mac OSX 10.14 上的 Python 3.6 我正在按照安装说明进行操作 here . 我可以成功执行第一个命令: pip inst
我对新算法有疑问,在这里我展示我的代码以便更好地理解它。 import pyomo.environ from pyomo.core import * from pyomo.opt import Sol
我正在使用 pyomo 构建许多模型,据我了解,pyomo 在求解模型之前会重新制定模型。 我想确切地知道模型在传递给求解器文件 ipopt 和 couenne 时是什么样子。 据我所见here我不清
我正在尝试将使用 CPLEX 求解器在 GAMS 中编写的模型传输到 Pyomo。 CPLEX 具有允许建模者在模型不可行时放宽约束和决策变量的功能 - FeasOpt(适用于可行优化)。我无法在 P
我是 Pyomo 的新手,我想知道如何更改具有一个或多个索引的现有模型参数的值。 我看过一些标量参数的例子,即没有索引。例如: model5 = ConcreteModel() model5.data
我有一个相当大的模型(大约 500 万个变量和约束)。 构建时间是几分钟,求解时间也是几分钟(使用 gurobi) 但是写模型需要很长时间(大约2小时) 这是我使用 model.write('mode
我正在尝试将一些数据转化为 PYOMO 模型以解决优化问题。 materials = ['steel', 'alum', 'carbon', 'cheese'] 每种 Material 都有 2 个属
我的脚本是: from __future__ import division import numpy import scipy from pyomo.environ
我在 Pyomo 中构建了一个抽象模型,效果很好。 但是,当我尝试使用字典来实例化抽象模型时,出现以下错误“错误:为目标值生成表达式时规则失败: RuntimeError:无法在抽象集“I”之前迭代
我一直在使用 Gurobi 来解决 MILP 问题,并使用 Pyomo 来生成模型。 Gurobi 支持返回一个解决方案池,我希望能够使用这个池生成多个解决方案。这在 Pyomo 中支持吗? 我试过使
Pyomo 中多目标优化的任何示例吗? 我正在尝试最小化 4 个目标(非线性),并且我想使用 pyomo 和 ipopt。还可以访问古罗比。 我想看一个非常简单的例子,我们尝试优化一系列决策变量(不仅
以下是我尝试运行的优化代码的一部分。 from pyomo.environ import * model = ConcreteModel() ## Define sets model.k = Set(
我是一名优秀的程序员,十分优秀!